Esempio n. 1
0
    def test_peak_model_for_cache(self):
        cache = {
            'patternCenter': [1, 6],
            'patternModel': [1, 4, 0],
            'confidence': 2,
            'convolveMax': 8,
            'convolveMin': 7,
            'windowSize': 1,
            'convDelMin': 0,
            'convDelMax': 0,
            'heightMax': 4,
            'heightMin': 4,
        }
        data_val = [
            2.0, 5.0, 1.0, 1.0, 1.0, 2.0, 5.0, 1.0, 1.0, 2.0, 3.0, 7.0, 1.0,
            1.0, 1.0
        ]
        dataframe = create_dataframe(data_val)
        segments = [{
            '_id': 'Esl7uetLhx4lCqHa',
            'analyticUnitId': 'opnICRJwOmwBELK8',
            'from': 1523889000010,
            'to': 1523889000012,
            'labeled': True,
            'deleted': False
        }]
        segments = [Segment.from_json(segment) for segment in segments]

        model = models.PeakModel()
        model.state = model.get_state(cache)
        result = model.fit(dataframe, segments, 'test')
        self.assertEqual(len(result.pattern_center), 3)
Esempio n. 2
0
    def test_peak_antisegments(self):
        data_val = [
            1.0, 1.0, 1.0, 2.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0, 5.0, 7.0, 5.0,
            1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
        ]
        dataframe = create_dataframe(data_val)
        segments = [{
            '_id': 'Esl7uetLhx4lCqHa',
            'analyticUnitId': 'opnICRJwOmwBELK8',
            'from': 1523889000010,
            'to': 1523889000012,
            'labeled': True,
            'deleted': False
        }, {
            '_id': 'Esl7uetLhx4lCqHa',
            'analyticUnitId': 'opnICRJwOmwBELK8',
            'from': 1523889000003,
            'to': 1523889000005,
            'labeled': False,
            'deleted': True
        }]
        segments = [Segment.from_json(segment) for segment in segments]

        try:
            model = models.PeakModel()
            model_name = model.__class__.__name__
            model.state = model.get_state(None)
            model.fit(dataframe, segments, 'test')
        except ValueError:
            self.fail('Model {} raised unexpectedly'.format(model_name))
Esempio n. 3
0
    def test_three_value_segment(self):
        data_val = [
            1.0, 1.0, 1.0, 1.0, 1.0, 5.0, 2.0, 5.0, 5.0, 1.0, 1.0, 1.0, 1.0,
            9.0, 9.0, 9.0, 9.0, 2.0, 3.0, 4.0, 5.0, 4.0, 2.0, 1.0, 3.0, 4.0
        ]
        dataframe = create_dataframe(data_val)
        segments = [{
            '_id': 'Esl7uetLhx4lCqHa',
            'analyticUnitId': 'opnICRJwOmwBELK8',
            'from': 1523889000004,
            'to': 1523889000006,
            'labeled': True,
            'deleted': False
        }]
        segments = [Segment.from_json(segment) for segment in segments]

        model_instances = [
            models.GeneralModel(),
            models.PeakModel(),
        ]
        try:
            for model in model_instances:
                model_name = model.__class__.__name__
                model.state = model.get_state(None)
                model.fit(dataframe, segments, 'test')
        except ValueError:
            self.fail('Model {} raised unexpectedly'.format(model_name))
def main(model_type: str) -> None:
    table_metric = []
    if model_type == 'peak':
        for data in PEAK_DATASETS:
            dataset = data.frame
            segments = data.get_segments_for_detection(1, 0)
            model = models.PeakModel()
            cache = model.fit(dataset, segments, 'test', {})
            detect_result = model.detect(dataset, 'test', cache)
            peak_metric = Metric(data.get_all_correct_segments(), detect_result)
            table_metric.append((peak_metric.get_amount(), peak_metric.get_accuracy()))
    return table_metric
Esempio n. 5
0
def resolve_model_by_pattern(pattern: str) -> models.Model:
    if pattern == 'GENERAL':
        return models.GeneralModel()
    if pattern == 'PEAK':
        return models.PeakModel()
    if pattern == 'TROUGH':
        return models.TroughModel()
    if pattern == 'DROP':
        return models.DropModel()
    if pattern == 'JUMP':
        return models.JumpModel()
    if pattern == 'CUSTOM':
        return models.CustomModel()
    raise ValueError('Unknown pattern "%s"' % pattern)
Esempio n. 6
0
 def test_peak_model_for_cache(self):
     cache = {
         'pattern_center': [1, 6],
         'model_peak': [1, 4, 0],
         'confidence': 2,
         'convolve_max': 8,
         'convolve_min': 7,
         'WINDOW_SIZE': 1,
         'conv_del_min': 0,
         'conv_del_max': 0,
     }
     data_val = [2.0, 5.0, 1.0, 1.0, 1.0, 2.0, 5.0, 1.0, 1.0, 2.0, 3.0, 7.0, 1.0, 1.0, 1.0]
     dataframe = create_dataframe(data_val)
     segments = [{'_id': 'Esl7uetLhx4lCqHa', 'analyticUnitId': 'opnICRJwOmwBELK8', 'from': 1523889000010, 'to': 1523889000012, 'labeled': True, 'deleted': False}]
     model = models.PeakModel()
     result = model.fit(dataframe, segments, cache)
     self.assertEqual(len(result['pattern_center']), 3)
Esempio n. 7
0
    def test_models_with_corrupted_dataframe(self):
        data = [[1523889000000 + i, float('nan')] for i in range(10)]
        dataframe = pd.DataFrame(data, columns=['timestamp', 'value'])
        segments = []

        model_instances = [
            models.JumpModel(),
            models.DropModel(),
            models.GeneralModel(),
            models.PeakModel(),
            models.TroughModel()
        ]
        try:
            for model in model_instances:
                model_name = model.__class__.__name__
                model.fit(dataframe, segments, dict())
        except ValueError:
            self.fail('Model {} raised unexpectedly'.format(model_name))
Esempio n. 8
0
    def test_models_with_corrupted_dataframe(self):
        data = [[1523889000000 + i, float('nan')] for i in range(10)]
        dataframe = pd.DataFrame(data, columns=['timestamp', 'value'])
        segments = []

        model_instances = [
            models.JumpModel(),
            models.DropModel(),
            models.GeneralModel(),
            models.PeakModel(),
            models.TroughModel()
        ]

        for model in model_instances:
            model_name = model.__class__.__name__
            model.state = model.get_state(None)
            with self.assertRaises(AssertionError):
                model.fit(dataframe, segments, 'test')
Esempio n. 9
0
 def test_random_dataset_for_random_model(self):
     data = create_random_model(random.randint(1, 100))
     data = create_dataframe(data)
     model_instances = [models.PeakModel(), models.TroughModel()]
     cache = {
         'patternCenter': [5, 50],
         'patternModel': [],
         'windowSize': 2,
         'convolveMin': 0,
         'convolveMax': 0,
         'confidence': 0,
         'heightMax': 0,
         'heightMin': 0,
         'convDelMin': 0,
         'convDelMax': 0,
     }
     ws = random.randint(1, int(len(data['value'] / 2)))
     pattern_model = create_random_model(ws)
     convolve = scipy.signal.fftconvolve(pattern_model, pattern_model)
     confidence = 0.2 * (data['value'].max() - data['value'].min())
     cache['windowSize'] = ws
     cache['patternModel'] = pattern_model
     cache['convolveMin'] = max(convolve)
     cache['convolveMax'] = max(convolve)
     cache['confidence'] = confidence
     cache['heightMax'] = data['value'].max()
     cache['heightMin'] = confidence
     try:
         for model in model_instances:
             model_name = model.__class__.__name__
             model.state = model.get_state(cache)
             model.detect(data, 'test')
     except ValueError:
         self.fail(
             'Model {} raised unexpectedly with dataset {} and cache {}'.
             format(model_name, data['value'], cache))