def build_discriminator(self, k=4):
        inputs = Input(shape=self.input_shape)

        x = inputs

        x = conv(f=128, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)
        x = conv(f=256, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)
        x = conv(f=256, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)
        x = conv(f=512, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)

        f = Flatten()(x)
        x = Dense(1024, kernel_regularizer=l2(0.001))(f)
        x = LeakyReLU(0.2)(x)

        x = Dense(1, activation='sigmoid', kernel_regularizer=l2(0.001))(x)

        return Model(inputs, [x, f])
    def build_classifier(self, k=4):
        inputs = Input(shape=self.input_shape)

        x = inputs

        x = conv(f=128, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)
        x = conv(f=256, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)
        x = conv(f=256, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)
        x = conv(f=512, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)

        f = Flatten()(x)
        x = Dense(1024, kernel_regularizer=l2(0.001))(f)
        x = LeakyReLU(0.2)(x)

        x = Dense(self.num_attrs,
                  activation='softmax',
                  kernel_regularizer=l2(0.001))(x)

        return Model(inputs, [x, f])
    def build_encoder(self, output_dims, k=4):
        x_inputs = Input(shape=self.input_shape)
        c_inputs = Input(shape=(self.num_attrs, ))

        c = Reshape((1, 1, self.num_attrs))(c_inputs)
        c = UpSampling2D(size=self.input_shape[:2])(c)
        x = Concatenate(axis=-1)([x_inputs, c])

        x = conv(f=128, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)
        x = conv(f=256, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)
        x = conv(f=256, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)
        x = conv(f=512, k=k, stride=2)(x)
        x = LeakyReLU(0.2)(x)

        x = Flatten()(x)
        x = Dense(1024, kernel_regularizer=l2(0.001))(x)
        x = LeakyReLU(0.2)(x)

        x = Dense(output_dims, kernel_regularizer=l2(0.001))(x)

        return Model([x_inputs, c_inputs], x)
Esempio n. 4
0
    def __init__(self, conv_dim=64, noise_dim=32, init_zero_weights=False):
        super(CycleGenerator, self).__init__()
        self.conv_dim = conv_dim
        self.noise_dim = noise_dim

        # 1. Define the encoder part of the generator (that extracts features from the input image)
        self.conv1 = conv(3, conv_dim, 4, padding=1, stride=2)
        self.conv2 = conv(conv_dim, conv_dim * 2, 4, padding=1, stride=2)

        # 2. Define the transformation part of the generator
        self.resnet_block = ResnetBlock(conv_dim * 2)

        # 3. Define the decoder part of the generator (that builds up the output image from features)
        self.deconv1 = deconv(conv_dim * 2 + noise_dim,
                              conv_dim,
                              4,
                              padding=1,
                              stride=2)
        self.deconv2 = deconv(conv_dim,
                              3,
                              4,
                              padding=1,
                              stride=2,
                              batch_norm=False)
from models import conv, xception
import numpy as np
import time
import tensorflow as tf
from tensorflow.keras.callbacks import TensorBoard

tensorboard_cb = TensorBoard(log_dir="logs/", profile_batch=0)

WIDTH = 80
HEIGHT = 60
LEARNING_RATE = 0.001
EPOCHS = 100
BATCH_SIZE = 75
MODEL_NAME = f"SelfDrivingCar-{time.time()}.h5"

model = conv(WIDTH, HEIGHT, LEARNING_RATE)

train_data = np.load("balanced_data.npy", allow_pickle=True)

train = train_data[:-100]
test = train_data[-100:]

x_train = np.array([sample[0] for sample in train],
                   dtype="int32").reshape(-1, WIDTH, HEIGHT, 1)
y_train = np.array([sample[1] for sample in train], dtype="int32")

x_test = np.array([sample[0] for sample in test],
                  dtype="int32").reshape(-1, WIDTH, HEIGHT, 1)
y_test = np.array([sample[1] for sample in test], dtype="int32")

print(x_train)