def construct_model(data_init, model_type, margs, load_model_path, load_model_complete, n_batch): import models margs['data_init'] = data_init if model_type == 'fcvae1': model = models.fcvae(**margs) if model_type == 'cvae1': model = models.cvae1(**margs) if load_model_path != None: print 'Loading existing model at ' + load_model_path _w = G.ndict.np_loadz(load_model_path + '/weights.ndict.tar.gz') G.ndict.set_value(model.w, _w, load_model_complete) G.ndict.set_value(model.w_avg, _w, load_model_complete) return model
def construct_model(data_init, model_type, margs, load_model_path, load_model_complete, n_batch): import models margs["data_init"] = data_init if model_type == "fcvae1": model = models.fcvae(**margs) if model_type == "cvae1": model = models.cvae1(**margs) if load_model_path != None: print "Loading existing model at " + load_model_path _w = G.ndict.np_loadz(load_model_path + "/weights.ndict.tar.gz") G.ndict.set_value(model.w, _w, load_model_complete) G.ndict.set_value(model.w_avg, _w, load_model_complete) return model
def construct_model(data_init, model_type, margs, load_model_path, load_model_complete, n_batch): import models margs['data_init'] = data_init if model_type == 'fcvae1': model = models.fcvae(**margs) if model_type == 'cvae1': model = models.cvae1(**margs) if model_type == 'simplecvae1': import simplemodel model = simplemodel.simplecvae1(**margs) if load_model_path != None: print 'Loading existing model at '+load_model_path _w = G.ndict.np_loadz(load_model_path+'/weights.ndict.tar.gz') G.ndict.set_value(model.w, _w, load_model_complete) G.ndict.set_value(model.w_avg, _w, load_model_complete) return model