Esempio n. 1
0
    def __init__(self,
                 model_type,
                 model_data_path,
                 mean_file_path=None,
                 oversample=2,
                 oversample_num=10):
        self._model_data_path = model_data_path

        self._oversample = oversample
        self.config_oversample_num(oversample, oversample_num)

        self._mean_file_path = mean_file_path if mean_file_path and len(
            mean_file_path) > 0 and osp.exists(mean_file_path) else None
        # tf.reset_default_graph()
        self._sesh = tf.Session()
        # Get the data specifications for the SplitAlexNet model
        self._spec = models.get_data_spec(model_class=model_class(model_type))
        # Create a placeholder for the input image
        self._input_node = tf.placeholder(tf.float32,
                                          shape=(None, self._spec.crop_size,
                                                 self._spec.crop_size,
                                                 self._spec.channels))
        # Get the net structure
        self._net = model_class(model_type)({'data': self._input_node})

        # Get the io to load pic after handle with mean file
        self.config_caffe_io()

        self.load_model_sesh()
Esempio n. 2
0
def classify(model_data_path, image_paths):
    '''Classify the given images using GoogleNet.'''

    # Get the data specifications for the GoogleNet model
    spec = models.get_data_spec(model_class=models.GoogleNet)

    # Create a placeholder for the input image
    input_node = tf.placeholder(tf.float32,
                                shape=(None, spec.crop_size, spec.crop_size,
                                       spec.channels))

    # Construct the network
    net = models.GoogleNet({'data': input_node})

    with tf.Session() as sesh:
        # Load the converted parameters
        print('Loading the model')
        net.load(model_data_path, sesh)
        # Load the input image
        print('Loading the images')
        input_images = dataset.load_images(image_paths, spec).eval()
        # Perform a forward pass through the network to get the class probabilities
        print('Classifying')
        probs = sesh.run(net.get_output(),
                         feed_dict={input_node: input_images})
        display_results(image_paths, probs)
Esempio n. 3
0
def main():
    # Parse arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('model_path',
                        help='Path to the converted model parameters (.npy)')
    parser.add_argument('val_gt',
                        help='Path to validation set ground truth (.txt)')
    parser.add_argument('imagenet_data_dir',
                        help='ImageNet validation set images directory path')
    parser.add_argument('--model',
                        default='GoogleNet',
                        help='The name of the model to evaluate')
    args = parser.parse_args()

    # Load the network
    net = load_model(args.model)
    if net is None:
        exit(-1)

    # Load the dataset
    data_spec = models.get_data_spec(model_instance=net)
    image_producer = dataset.ImageNetProducer(val_path=args.val_gt,
                                              data_path=args.imagenet_data_dir,
                                              data_spec=data_spec)

    # Evaluate its performance on the ILSVRC12 validation set
    validate(net, args.model_path, image_producer, args.model)
Esempio n. 4
0
def validate(net, model_path, images, top_k=5):
    '''Compute the top_k classification accuracy for the given network and images.'''
    # Get the data specifications for given network
    spec = models.get_data_spec(model_instance=net)
    # Get the input node for feeding in the images
    input_node = net.inputs['data']
    # Create a placeholder for the ground truth labels
    label_node = tf.placeholder(tf.int32, shape=(spec.batch_size,))
    # Get the output of the network (class probabilities)
    probs = net.get_output()
    # Create a top_k accuracy node
    top_k_op = tf.nn.in_top_k(probs, label_node, top_k)
    # The number of images processed
    count = 0
    # The number of correctly classified images
    correct = 0
    # The total number of images
    total = len(images)
    with tf.Session() as sesh:
        # Load the converted parameters
        net.load(model_path, sesh)
        # Iterate over and classify mini-batches
        for idx, (images, labels) in enumerate(images.batches(spec.batch_size)):
            correct += np.sum(sesh.run(top_k_op,
                                       feed_dict={input_node: images.eval(),
                                                  label_node: labels}))
            count += images.get_shape()[0].value
            cur_accuracy = float(correct) * 100 / count
            print('{:>6}/{:<6} {:>6.2f}%'.format(count, total, cur_accuracy))
    print('Top {} Accuracy: {}'.format(top_k, float(correct) / total))
Esempio n. 5
0
def get_spec():
    net = load_model('AlexNet')
    if net is None:
        exit(-1)
    # Load the dataset
    data_spec = models.get_data_spec(model_instance=net)
    return data_spec
def main():
    # Parse arguments
    parser = argparse.ArgumentParser(description='Use Adam optimizer to generate adversarial examples.')
    parser.add_argument('-i', '--input_dir', type=str, required=True,
                        help='Directory of dataset.')
    parser.add_argument('-o', '--output_dir', type=str, required=True,
                        help='Directory of output image file.')
    parser.add_argument('--model', type=str, required=True,choices=['GoogleNet','Inception2'],
                        help='Models to be evaluated.')
    parser.add_argument('--num_images', type=int, default=sys.maxsize,
                        help='Max number of images to be evaluated.')
    parser.add_argument('--file_list', type=str, default=None,
                        help='Evaluate a specific list of file in dataset.')
    parser.add_argument('--num_iter', type=int, default=100,
                        help='Number of iterations to generate attack.')
    parser.add_argument('--save_freq', type=int, default=100,
                        help='Save .npy file when each save_freq iterations.')
    parser.add_argument('--learning_rate', type=float, default=0.001 * 255,
                        help='Learning rate of each iteration.')
    parser.add_argument('--target', type=str, default=None,
                        help='Target list of dataset.')
    parser.add_argument('--weight_loss2', type=float, default=1.0,
                        help='Weight of distance penalty.')
    parser.add_argument('--not_crop', dest='use_crop', action='store_false',
                        help='Not use crop in image producer.')

    parser.set_defaults(use_crop=True)
    args = parser.parse_args()
    print(args.file_list)
    assert args.num_iter % args.save_freq == 0

    data_spec = models.get_data_spec(model_name=args.model)
    args.learning_rate = args.learning_rate / 255.0 * (data_spec.rescale[1] - data_spec.rescale[0])
    seq_len = 40
    batch_size = 1 
    targets = None
    if args.target is not None:
        targets = {}
        with open(args.target, 'r') as f:
            for line in f:
                key, value = line.strip().split()
                targets[key] = int(value)
                
    calc_gradients(
        args.file_list,
        args.model,
        args.output_dir,
        args.num_iter,
        args.learning_rate,
        targets,
        args.weight_loss2,
        data_spec,
        batch_size,
        seq_len)
Esempio n. 7
0
def classify(model_data_path, image_paths):
    '''Classify the given images using GoogleNet.'''

    # Get the data specifications for the GoogleNet model
    spec = models.get_data_spec(model_class=models.GoogleNet)

    # Create a placeholder for the input image
    input_node = tf.placeholder(tf.float32,
                                shape=(None, spec.crop_size, spec.crop_size,
                                       spec.channels))

    # Construct the network
    net = models.GoogleNet({'data': input_node})

    # Create an image producer (loads and processes images in parallel)
    image_producer = dataset.ImageProducer(image_paths=image_paths,
                                           data_spec=spec)

    with tf.Session() as sesh:
        # Start the image processing workers
        coordinator = tf.train.Coordinator()
        threads = image_producer.start(session=sesh, coordinator=coordinator)

        # Load the converted parameters
        print('Loading the model')
        net.load(model_data_path, sesh)

        # Load the input image
        print('Loading the images')
        indices, input_images = image_producer.get(sesh)

        # Perform a forward pass through the network to get the class probabilities
        print('Classifying')
        # probs = sesh.run(net.get_output(), feed_dict={input_node: input_images})
        # display_results([image_paths[i] for i in indices], probs)

        # # ////////////////////////////////////////////////////////////////////////////////////
        feature_tensor = sesh.graph.get_tensor_by_name('pool5_7x7_s1:0')
        features = sesh.run(feature_tensor,
                            feed_dict={input_node: input_images})
        features = np.squeeze(features)

        for i, j in enumerate(indices):
            video_feature[image_paths[j]] = features[i]

        # print features.shape
        # print features
        # ////////////////////////////////////////////////////////////////////////////////////

        # Stop the worker threads
        coordinator.request_stop()
        coordinator.join(threads, stop_grace_period_secs=2)
Esempio n. 8
0
def classify_new(model_data_path, mean_file_path, image_paths):
    '''Classify the given images using SplitAlexNet.'''

    util.log('--------start:%s-------------------------' % image_paths)
    t1 = time.time()

    # Get the data specifications for the SplitAlexNet model
    spec = models.get_data_spec(model_class=models.SplitAlexNet)

    # Create a placeholder for the input image
    input_node = tf.placeholder(tf.float32,
                                shape=(None, spec.crop_size, spec.crop_size, spec.channels))

    # Construct the network
    net = models.SplitAlexNet({'data': input_node})
    # tf.reset_default_graph()
    with tf.Session() as sesh:
        # set to reuse the variables
        tf.get_variable_scope().reuse_variables()

        util.log('Loading the model start')
        net.load(model_data_path, sesh)

        t2 = time.time()

        util.log('Loading the model end %.3fs' % (t2 - t1))

        rst = 0
        for image_path in image_paths:
            input_image = load_image([image_path], mean_file_path, spec)

            probs = sesh.run(net.get_output(), feed_dict={input_node: input_image})

            if IMAGE_LOAD_TYPE == 'caffe' and OVER_SAMPLE:
                probs = probs.reshape((len(probs) / OVER_SAMPLE_NUM, OVER_SAMPLE_NUM, -1))
                probs = probs.mean(1)
            util.log('[predicting]:%s,%f,%f'%(image_path,probs[0,0],probs[0,1]))
            if isinstance(rst, int): rst = probs
            else:
                rst = np.concatenate((rst,probs),axis=0)
            del input_image
    t3 = time.time()
    util.log('--------end 总耗时 %.3fs  加载模型耗时 %.3fs 预测耗时 %.3fs-----------------' % (
    (t3 - t1), (t2 - t1), (t3 - t2)))

    return rst
Esempio n. 9
0
def classify(model_data_path, mean_file_path, image_paths):
    '''Classify the given images using SplitAlexNet.'''

    util.log('--------start:%s-------------------------' % image_paths)
    t1 = time.time()

    # Get the data specifications for the SplitAlexNet model
    spec = models.get_data_spec(model_class=models.SplitAlexNet)

    # Create a placeholder for the input image
    input_node = tf.placeholder(tf.float32,
                                shape=(None, spec.crop_size, spec.crop_size, spec.channels))

    # Construct the network
    net = models.SplitAlexNet({'data': input_node})
    #tf.reset_default_graph()
    with tf.Session() as sesh:
        # set to reuse the variables
        tf.get_variable_scope().reuse_variables()

        util.log('Loading the model start')
        net.load(model_data_path, sesh)

        t2 = time.time()

        util.log('Loading the model end %.3fs'% (t2-t1))

        util.log('Loading the images start')
        input_images = load_image(image_paths,mean_file_path,spec)
        t3 = time.time()
        util.log('Loading the images end %.3fs'% (t3-t2))

        # Perform a forward pass through the network to get the class probabilities
        util.log('judging image:%s'%image_paths)
        probs = sesh.run(net.get_output(), feed_dict={input_node: input_images})
        if IMAGE_LOAD_TYPE == 'caffe' and OVER_SAMPLE:
            probs = probs.reshape((len(probs) / OVER_SAMPLE_NUM, OVER_SAMPLE_NUM, -1))
            probs = probs.mean(1)
        t4 = time.time()
        del input_images  # free memory

    util.log('--------end 总耗时 %.3fs  加载模型耗时 %.3fs 加载图片耗时 %.3fs 预测耗时 %.3fs-----------------' % ((t4 - t1), (t2 - t1), (t3 - t2),(t4-t3)))
    return probs
Esempio n. 10
0
def validate(net, model_path, image_producer, top_k=5):
    """
    Compute the top_k classification accuracy for the given network and images.
    """
    # Get the data specifications for given network
    spec = models.get_data_spec(model_instance=net)
    # Get the input node for feeding in the images
    input_node = net.inputs['data']
    # Create a placeholder for the ground truth labels
    label_node = tf.placeholder(tf.int32)
    # Get the output of the network (class probabilities)
    probs = net.get_output()
    # Create a top_k accuracy node
    top_k_op = tf.nn.in_top_k(probs, label_node, top_k)
    # The number of images processed
    count = 0
    # The number of correctly classified images
    correct = 0
    # The total number of images
    total = len(image_producer)

    with tf.Session() as session:
        coordinator = tf.train.Coordinator()
        # Load the converted parameters
        net.load(data_path=model_path, session=session)
        # Start the image processing workers
        threads = image_producer.start(session=session,
                                       coordinator=coordinator)
        # Iterate over and classify mini-batches
        for (labels, images) in image_producer.batches(session):
            correct += np.sum(
                session.run(top_k_op,
                            feed_dict={
                                input_node: images,
                                label_node: labels
                            }))
            count += len(labels)
            cur_accuracy = float(correct) * 100 / count
            print('{:>6}/{:<6} {:>6.2f}%'.format(count, total, cur_accuracy))
        # Stop the worker threads
        coordinator.request_stop()
        coordinator.join(threads, stop_grace_period_secs=2)
    print('Top {} Accuracy: {}'.format(top_k, float(correct) / total))
Esempio n. 11
0
def classify(model_data_path, image_paths):
    '''Classify the given images using GoogleNet.'''

    # Get the data specifications for the GoogleNet model
    spec = models.get_data_spec(model_class=models.GoogleNet)

    # Create a placeholder for the input image
    input_node = tf.placeholder(tf.float32,
                                shape=(None, spec.crop_size, spec.crop_size,
                                       spec.channels))

    # Construct the network
    net = models.GoogleNet({'data': input_node})

    # Create an image producer (loads and processes images in parallel)
    image_producer = dataset.ImageProducer(image_paths=image_paths,
                                           data_spec=spec)

    with tf.Session() as sesh:
        # Start the image processing workers
        coordinator = tf.train.Coordinator()
        threads = image_producer.start(session=sesh, coordinator=coordinator)

        # Load the converted parameters
        print('Loading the model')
        net.load(model_data_path, sesh)

        # Load the input image
        print('Loading the images')
        indices, input_images = image_producer.get(sesh)

        # Perform a forward pass through the network to get the class probabilities
        print('Timing in seconds :')
        start_time = time.time()
        probs = sesh.run(net.get_output(),
                         feed_dict={input_node: input_images})
        duration = time.time() - start_time
        print(duration)
        display_results([image_paths[i] for i in indices], probs)

        # Stop the worker threads
        coordinator.request_stop()
        coordinator.join(threads, stop_grace_period_secs=2)
Esempio n. 12
0
def main():
    # Parse arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('model_path', help='Path to the converted model parameters (.npy)')
    parser.add_argument('val_gt', help='Path to validation set ground truth (.txt)')
    parser.add_argument('imagenet_data_dir', help='ImageNet validation set images directory path')
    parser.add_argument('--model', default='GoogleNet', help='The name of the model to evaluate')
    args = parser.parse_args()

    # Load the network
    net = load_model(args.model)
    if net is None:
        exit(-1)

    # Load the dataset
    data_spec = models.get_data_spec(model_instance=net)
    images = dataset.ImageNet(args.val_gt, args.imagenet_data_dir, data_spec)

    # Evaluate its performance on the ILSVRC12 validation set
    validate(net, args.model_path, images)
Esempio n. 13
0
def load_model(name):
    '''Creates and returns an instance of the model given its class name.
    The created model has a single placeholder node for feeding images.
    '''
    # Find the model class from its name
    all_models = models.get_models()
    lut = {model.__name__: model for model in all_models}
    if name not in lut:
        print('Invalid model index. Options are:')
        # Display a list of valid model names
        for model in all_models:
            print('\t* {}'.format(model.__name__))
        return None
    NetClass = lut[name]

    # Create a placeholder for the input image
    spec = models.get_data_spec(model_class=NetClass)
    data_node = tf.placeholder(tf.float32,
                               shape=(None, spec.crop_size, spec.crop_size, spec.channels))

    # Construct and return the model
    return NetClass({'data': data_node})
Esempio n. 14
0
def load_model(name):
    '''Creates and returns an instance of the model given its class name.
    The created model has a single placeholder node for feeding images.
    '''
    # Find the model class from its name
    all_models = models.get_models()
    lut = {model.__name__: model for model in all_models}
    if name not in lut:
        print('Invalid model index. Options are:')
        # Display a list of valid model names
        for model in all_models:
            print('\t* {}'.format(model.__name__))
        return None
    NetClass = lut[name]

    # Create a placeholder for the input image
    spec = models.get_data_spec(model_class=NetClass)
    data_node = tf.placeholder(tf.float32,
                               shape=(None, spec.crop_size, spec.crop_size, spec.channels))

    # Construct and return the model
    return NetClass({'data': data_node})
Esempio n. 15
0
def validate(net, model_path, image_producer, top_k=5):
    '''Compute the top_k classification accuracy for the given network and images.'''
    # Get the data specifications for given network
    spec = models.get_data_spec(model_instance=net)
    # Get the input node for feeding in the images
    input_node = net.inputs['data']
    # Create a placeholder for the ground truth labels
    label_node = tf.placeholder(tf.int32)
    # Get the output of the network (class probabilities)
    probs = net.get_output()
    # Create a top_k accuracy node
    top_k_op = tf.nn.in_top_k(probs, label_node, top_k)
    # The number of images processed
    count = 0
    # The number of correctly classified images
    correct = 0
    # The total number of images
    total = len(image_producer)

    with tf.Session() as sesh:
        coordinator = tf.train.Coordinator()
        # Load the converted parameters
        net.load(data_path=model_path, session=sesh)
        # Start the image processing workers
        threads = image_producer.start(session=sesh, coordinator=coordinator)
        # Iterate over and classify mini-batches
        for (labels, images) in image_producer.batches(sesh):
            correct += np.sum(sesh.run(top_k_op,
                                       feed_dict={input_node: images,
                                                  label_node: labels}))
            count += len(labels)
            cur_accuracy = float(correct) * 100 / count
            print('{:>6}/{:<6} {:>6.2f}%'.format(count, total, cur_accuracy))
        # Stop the worker threads
        coordinator.request_stop()
        coordinator.join(threads, stop_grace_period_secs=2)
    print('Top {} Accuracy: {}'.format(top_k, float(correct) / total))
Esempio n. 16
0
def classify(model_data_path, image_paths):
    """Classify the given images using GoogleNet."""

    # Get the data specifications for the GoogleNet model
    spec = models.get_data_spec(model_class=models.GoogleNet)

    # Create a placeholder for the input image
    input_node = tf.placeholder(tf.float32, shape=(None, spec.crop_size, spec.crop_size, spec.channels))

    # Construct the network
    net = models.GoogleNet({"data": input_node})

    # Create an image producer (loads and processes images in parallel)
    image_producer = dataset.ImageProducer(image_paths=image_paths, data_spec=spec)

    with tf.Session() as sesh:
        # Start the image processing workers
        coordinator = tf.train.Coordinator()
        threads = image_producer.start(session=sesh, coordinator=coordinator)

        # Load the converted parameters
        print("Loading the model")
        net.load(model_data_path, sesh)

        # Load the input image
        print("Loading the images")
        indices, input_images = image_producer.get(sesh)

        # Perform a forward pass through the network to get the class probabilities
        print("Classifying")
        probs = sesh.run(net.get_output(), feed_dict={input_node: input_images})
        display_results([image_paths[i] for i in indices], probs)

        # Stop the worker threads
        coordinator.request_stop()
        coordinator.join(threads, stop_grace_period_secs=2)
Esempio n. 17
0
def classify(model_data_path, image_paths):
    '''Classify the given images using GoogleNet.'''

    # Get the data specifications for the GoogleNet model
    spec = models.get_data_spec(model_class=models.GoogleNet)

    # Create a placeholder for the input image
    input_node = tf.placeholder(tf.float32,
                                shape=(None, spec.crop_size, spec.crop_size, spec.channels))

    # Construct the network
    net = models.GoogleNet({'data': input_node})

    with tf.Session() as sesh:
        # Load the converted parameters
        print('Loading the model')
        net.load(model_data_path, sesh)
        # Load the input image
        print('Loading the images')
        input_images = dataset.load_images(image_paths, spec).eval()
        # Perform a forward pass through the network to get the class probabilities
        print('Classifying')
        probs = sesh.run(net.get_output(), feed_dict={input_node: input_images})
        display_results(image_paths, probs)
Esempio n. 18
0
def interpret_resnet(resnet_type, attention=False):
    if attention:
        if resnet_type == 50:
            spec = models.get_data_spec(model_class=models.attResNet50)
            net = models.attResNet50
        elif resnet_type == 101:
            spec = models.get_data_spec(model_class=models.attResNet101)
            net = models.attResNet101
        elif resnet_type == 152:
            spec = models.get_data_spec(model_class=models.attResNet152)
            net = models.attResNet152
    else:
        if resnet_type == 50:
            spec = models.get_data_spec(model_class=models.ResNet50)
            net = models.ResNet50
        elif resnet_type == 101:
            spec = models.get_data_spec(model_class=models.ResNet101)
            net = models.ResNet101
        elif resnet_type == 152:
            spec = models.get_data_spec(model_class=models.ResNet152)
            net = models.ResNet152
    return net, spec
Esempio n. 19
0
import models
import tensorflow as tf
import numpy as np

# Get the data specifications for the GoogleNet model
spec = models.get_data_spec(model_class=models.VGG_FACE_16_layer)

x = tf.placeholder(tf.string)  #input filename
image_string = tf.read_file(x)
testimage = tf.image.decode_image(image_string, channels=3)
testimage = tf.cast(testimage, tf.float32)
averageImg = tf.constant([129.1863, 104.7624, 93.5940])
averageImg = tf.reshape(averageImg, [1, 1, 3])

testimage = tf.reshape(testimage - averageImg,
                       [-1, 224, 224, 3])  #subtract the mean
#testimage = tf.transpose(testimage, perm=[0, 1, 2, 3])
#y_ = tf.placeholder(tf.float32, shape=[None, ylen]) #labels

x_img_channel_swap = testimage[:, :, :, ::
                               -1]  #RGB to BGR because the model is from caffe

# Construct the network
net = models.VGG_FACE_16_layer({'data': x_img_channel_swap})

testfile = '/home/djecklocal/Documents/python/FaceGender/Models/VGG_Face_Caffe/ak.png'
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
prediction = testimage.eval(feed_dict={x: testfile})

print(prediction)
Esempio n. 20
0
def classify(model_data_path, image_pathFolder):
    '''Classify the given images using AlexNet.'''

    print(model_data_path)
    print(image_pathFolder)
    image_paths = []
    for filename in os.listdir(image_pathFolder):
        image_paths.append(image_pathFolder + filename)
    print(image_paths)
    #if(True)
    #sys.exit(0)
    # Get the data specifications for the AlexNet model
    spec = models.get_data_spec(model_class=models.AlexNet)
    #print(spec)
    # Create a placeholder for the input image
    input_node = tf.placeholder(tf.float32,
                                shape=(None, spec.crop_size, spec.crop_size,
                                       spec.channels))
    print(input_node)

    # Construct the network
    net = models.AlexNet({'data': input_node})
    print("net---------------------")

    # Create an image producer (loads and processes images in parallel)
    image_producer = dataset.ImageProducer(image_paths=image_paths,
                                           data_spec=spec)
    print(image_producer)
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = '1'
    with tf.Session() as sesh:
        print(
            'start  -----------------------------------------------------------------%s'
            % datetime.now())
        sesh.run(tf.global_variables_initializer())
        # Start the image processing workers
        coordinator = tf.train.Coordinator()
        threads = image_producer.start(session=sesh, coordinator=coordinator)

        # Load the converted parameters
        print(
            'Loading the model -----------------------------------------------------------------%s'
            % datetime.now())
        net.load(model_data_path, sesh)

        # Load the input image
        print(
            'Loading the images-----------------------------------------------------------------%s'
            % datetime.now())
        indices, input_images = image_producer.get(sesh)

        # Perform a forward pass through the network to get the class probabilities
        print(
            'Classifying        -----------------------------------------------------------------%s'
            % datetime.now())
        probs = sesh.run(net.get_output(),
                         feed_dict={input_node: input_images})
        print(
            'Classifying END    -----------------------------------------------------------------%s'
            % datetime.now())
        display_results([image_paths[i] for i in indices], probs)

        # Stop the worker threads
        coordinator.request_stop()
        coordinator.join(threads, stop_grace_period_secs=2)
Esempio n. 21
0
def validate(net, model_path, image_producer, model_name, top_k=5):
    '''Compute the top_k classification accuracy for the given network and images.'''
    # Get the data specifications for given network
    spec = models.get_data_spec(model_instance=net)
    # Get the input node for feeding in the images
    input_node = net.inputs['data']
    # Create a placeholder for the ground truth labels
    label_node = tf.placeholder(tf.int32)
    # Get the output of the network (class probabilities)
    probs = net.get_output()
    compute_ops = {}
    threshold = 50
    # Sparisty in conv layer inputs
    total_ops = 0
    for lname, op_count in net.layer_op_counts.iteritems():
        layer_inputs = net.layer_inputs[lname]
        assert (len(layer_inputs) == 1)
        for lin in layer_inputs:
            zero_actv = tf.less(tf.abs(lin), threshold)
            num_zeroes = tf.reduce_sum(tf.cast(zero_actv, tf.int32))
            sparsity = tf.div(tf.cast(num_zeroes, tf.float32),
                              tf.cast(tf.size(lin), tf.float32))

            compute_ops[lname] = sparsity
            compute_ops[lname + '_min'] = tf.reduce_min(lin)
            compute_ops[lname + '_max'] = tf.reduce_max(lin)

        total_ops = total_ops + op_count
    """
    for lname in sorted(net.layer_op_counts, key=net.layer_op_counts.get, reverse=True):
        op_count = net.layer_op_counts[lname]
        print("%s %.3f" %(lname, float(op_count)/total_ops))
    """
    # Create a top_k accuracy node
    top_k_op = tf.nn.in_top_k(probs, label_node, top_k)
    compute_ops['top_k'] = top_k_op
    # The number of images processed
    count = 0
    # The number of correctly classified images
    correct = 0
    # The total number of images
    total = len(image_producer)
    #merged = tf.merge_all_summaries()
    sparsity = {}
    input_min = {}
    input_max = {}
    for lname, ops in net.layer_op_counts.iteritems():
        sparsity[lname] = 0
        input_max[lname] = float('-inf')
        input_min[lname] = float('inf')

    with tf.Session() as sesh:
        #writer = tf.train.SummaryWriter('/tmp/' + model_name, graph = sesh.graph)
        coordinator = tf.train.Coordinator()
        # Load the converted parameters
        net.load(data_path=model_path, session=sesh)
        # Start the image processing workers
        threads = image_producer.start(session=sesh, coordinator=coordinator)
        # Iterate over and classify mini-batches
        batch_num = 0
        for (labels, images) in image_producer.batches(sesh):
            start = time.time()
            """
            summary, top_k_res = sesh.run([top_k_op],
                                          feed_dict={input_node: images,
                                                     label_node: labels})
            """
            out_dict = sesh.run(compute_ops,
                                feed_dict={
                                    input_node: images,
                                    label_node: labels
                                })

            for lname, ops in net.layer_op_counts.iteritems():
                sparsity[lname] = sparsity[lname] + out_dict[lname]
                input_max[lname] = max(input_max[lname],
                                       out_dict[lname + '_max'])
                input_min[lname] = min(input_min[lname],
                                       out_dict[lname + '_min'])

            correct += np.sum(out_dict['top_k'])
            print('Inference time for batch_size=%d is %.2f ms.' %
                  (len(labels), 1000 * (time.time() - start)))
            count += len(labels)
            cur_accuracy = float(correct) * 100 / count
            print('{:>6}/{:<6} {:>6.2f}%'.format(count, total, cur_accuracy))
            #writer.add_summary(summary, batch_num)
            batch_num = batch_num + 1
        # Stop the worker threads
        coordinator.request_stop()
        coordinator.join(threads, stop_grace_period_secs=2)
        #writer.close()
    print('Top {} Accuracy: {}'.format(top_k, float(correct) / total))

    for lname in sorted(net.layer_op_counts,
                        key=net.layer_op_counts.get,
                        reverse=True):
        print lname, float(net.layer_op_counts[lname])/total_ops, \
              sparsity[lname]/total, input_min[lname], input_max[lname]
Esempio n. 22
0
        elif layer_name.startswith('conv') or layer_name.startswith('fc'):
            parameters[layer_name]['weights'] = np.load(
                '%s/%s/weights.npy' % (pruned_weights_root, layer_name))
            parameters[layer_name]['biases'] = np.load(
                '%s/%s/biases.npy' % (pruned_weights_root, layer_name))

    return parameters


# Load the network
net = load_model('ResNet50')
if net is None:
    exit(-1)
exit(-1)

parameters = np.load('res50.npy')
# Place the pruned weights into a parameters
pruned_parameters = make_pruned_parameters(parameters, 'pruned_weights')
# Load the dataset
val_gt = 'val.txt'
# imagenet_data_dir = '../val_img/'
imagenet_data_dir = '/mnt/data/imagenet/ILSVRC2012_img_val'
# model_path = 'vgg16.npy'
data_spec = models.get_data_spec(model_instance=net)
image_producer = dataset.ImageNetProducer(val_path=val_gt,
                                          data_path=imagenet_data_dir,
                                          data_spec=data_spec)

# Evaluate its performance on the ILSVRC12 validation set
validate(net, pruned_parameters, image_producer)
def classify(model_data_path, image_paths):
    '''Classify the given images using GoogleNet.'''

    # Get the data specifications for the GoogleNet model
    #spec = models.get_data_spec(model_class=models.GoogleNet)
    spec = models.get_data_spec(model_class=models.VGG_ILSVRC_16_layer)

    # Create a placeholder for the input image
    input_node = tf.placeholder(tf.float32,
                                shape=(None, spec.crop_size, spec.crop_size,
                                       spec.channels))

    # Construct the network
    #net = models.GoogleNet({'data': input_node})
    net = models.VGG_ILSVRC_16_layer({'data': input_node})

    def load_image(image_path, data_spec):
        # Read the file
        file_data = tf.read_file(image_path)
        # Decode the image data
        img = tf.image.decode_jpeg(file_data, channels=data_spec.channels)
        if data_spec.expects_bgr:
            # Convert from RGB channel ordering to BGR
            # This matches, for instance, how OpenCV orders the channels.
            img = tf.reverse(img, [2, 1, 0])
        return img

    # Create an image producer (loads and processes images in parallel)
    image_producer = dataset.ImageProducer(image_paths=image_paths,
                                           data_spec=spec)

    with tf.Session() as sesh:
        # Start the image processing workers
        #coordinator = tf.train.Coordinator()
        #threads = image_producer.start(session=sesh, coordinator=coordinator)

        # Load the converted parameters
        print('Loading the model')
        net.load(model_data_path, sesh)

        # Load the input image
        print('Loading the images')
        is_jpeg = True
        probs = []
        for image_path in image_paths:
            input_image = load_image(image_path, image_producer.data_spec)
            processed_img = dataset.process_image(
                img=input_image,
                scale=image_producer.data_spec.scale_size,
                isotropic=image_producer.data_spec.isotropic,
                crop=image_producer.data_spec.crop_size,
                mean=image_producer.data_spec.mean)
            #print('Classifying')
            prob = sesh.run(net.get_output(),
                            feed_dict={
                                input_node:
                                np.reshape(processed_img.eval(),
                                           (1, 224, 224, 3))
                            })
            probs.extend(prob)
        #indices, input_images = image_producer.get(sesh)
        indices = range(len(image_paths))
        # Perform a forward pass through the network to get the class probabilities

        display_results([image_paths[i] for i in indices], probs)
Esempio n. 24
0
def calc_gradients(sesh,
                   model_name,
                   image_producer,
                   output_file_dir,
                   max_iter,
                   save_freq,
                   learning_rate=1.0,
                   targets=None,
                   weight_loss2=1,
                   data_spec=None,
                   batch_size=1,
                   noise_file=None):
    """Compute the gradients for the given network and images."""

    spec = models.get_data_spec(model_name)

    modifier = tf.Variable(
        np.zeros((batch_size, spec.crop_size, spec.crop_size, spec.channels),
                 dtype=np.float32))
    input_image = tf.placeholder(
        tf.float32, (None, spec.crop_size, spec.crop_size, spec.channels))
    input_label = tf.placeholder(tf.int32, (None))

    true_image = tf.minimum(
        tf.maximum(modifier + input_image, -spec.mean + spec.rescale[0]),
        -spec.mean + spec.rescale[1])
    diff = true_image - input_image
    loss2 = tf.sqrt(tf.reduce_mean(tf.square(true_image - input_image)))

    probs, variable_set = models.get_model(sesh, true_image, model_name)

    weight_loss1 = 1
    true_label_prob = tf.reduce_mean(
        tf.reduce_sum(probs * tf.one_hot(input_label, 1000), [1]))
    if targets is None:
        loss1 = -tf.log(1 - true_label_prob + 1e-6)
    else:
        loss1 = -tf.log(true_label_prob + 1e-6)
    loss = weight_loss1 * loss1  # + weight_loss2 * loss2
    optimizer = tf.train.AdamOptimizer(learning_rate)
    train = optimizer.minimize(loss, var_list=[modifier])

    noise = None
    # Load noise file
    if noise_file is not None:
        noise = np.load(noise_file) / 255.0 * \
            (spec.rescale[1] - spec.rescale[0])

    # The number of images processed
    # The total number of images
    total = len(image_producer)
    save_times = (max_iter - 1) / save_freq + 1
    gradient_record = np.zeros(shape=(save_times, total, spec.crop_size,
                                      spec.crop_size, spec.channels),
                               dtype=float)
    rec_iters = []
    rec_names = []
    rec_dist = []

    # initiallize all uninitialized varibales
    init_varibale_list = set(tf.all_variables()) - variable_set
    sesh.run(tf.initialize_variables(init_varibale_list))

    tot_image = 0

    image_producer.startover()
    # Interactive with mini-batches
    for (indices, labels, names, images) in image_producer.batches(sesh):
        sesh.run(tf.initialize_variables(init_varibale_list))
        if targets is not None:
            labels = [targets[e] for e in names]
        if noise is not None:
            for i in range(len(indices)):
                images[i] += noise[indices[i]]
        feed_dict = {input_image: images, input_label: labels}
        var_loss, true_prob, var_loss1, var_loss2 = sesh.run(
            (loss, true_label_prob, loss1, loss2), feed_dict=feed_dict)
        tot_image += 1
        print 'Start!'
        min_loss = var_loss
        last_min = -1

        # record numer of iteration
        tot_iter = 0
        for cur_iter in range(max_iter):
            tot_iter += 1

            sesh.run(train, feed_dict=feed_dict)
            var_loss, true_prob, var_loss1, var_loss2 = sesh.run(
                (loss, true_label_prob, loss1, loss2), feed_dict=feed_dict)

            break_condition = False
            if var_loss < min_loss * 0.99:
                min_loss = var_loss
                last_min = cur_iter

            if (cur_iter + 1) % save_freq == 0:
                noise_diff = sesh.run(modifier)
                for i in range(len(indices)):
                    gradient_record[(cur_iter + 1) / save_freq -
                                    1][indices[i]] = noise_diff[i]

            if cur_iter + 1 == max_iter or break_condition:
                var_diff, var_probs = sesh.run((modifier, probs),
                                               feed_dict=feed_dict)
                var_diff = np.sqrt(np.mean(
                    np.square(var_diff),
                    (1, 2, 3))) / (spec.rescale[1] - spec.rescale[0]) * 255.0
                correct_top_1 = 0
                for i in range(len(indices)):
                    top1 = var_probs[i].argmax()
                    if labels[i] == top1:
                        correct_top_1 += 1
                    rec_iters.append(tot_iter)
                    rec_names.append(names[i])
                    rec_dist.append(var_diff[i])
                break
    return gradient_record
def main():
    # Parse arguments
    parser = argparse.ArgumentParser(
        description='Use Fast Gradient or Fast Gradient Sign method \
                        to generate adversarial examples.')
    parser.add_argument('-i', '--input_dir', type=str, required=True,
        help='Directory of dataset.')
    parser.add_argument('-o', '--output_dir', type=str, required=True,
        help='Directory of output image file.')
    parser.add_argument('--model', type=str, required=True,
        choices=['GoogleNet'],
        help='Models to be evaluated.')
    parser.add_argument('--file_list', type=str, required=False,
        help='Evaluate a specific list of file in dataset.')
    parser.add_argument('--num_iter', type=int, default=100)
    parser.add_argument('--sign', dest='use_sign', action='store_true')
    parser.add_argument('--target', type=str, default=None,
                        help='Target list of file in dataset.')
    parser.add_argument('--noise_file', type=str, default=None)
    parser.add_argument('-n', '--not_crop', dest='need_rescale',
                        action='store_false')
    parser.set_defaults(num_images=sys.maxsize)
    parser.set_defaults(use_sign=False)
    parser.set_defaults(need_rescale=True)

    args = parser.parse_args()

    targets = None
    if args.target is not None:
        targets = {}
        with open(args.target, 'r') as f:
            for line in f:
                key, value = line.strip().split()
                targets[key] = int(value)

    if os.path.exists(args.output_dir):
        shutil.rmtree(args.output_dir)
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    data_spec = models.get_data_spec(model_name=args.model)

    sesh = tf.Session()
    if args.noise_file is None:
        input_node = tf.placeholder(
            tf.float32,
            shape=(
                None,
                data_spec.crop_size,
                data_spec.crop_size,
                data_spec.channels))
        probs_output, variable_list = models.get_model(
            sesh, input_node, args.model)

    image_producer = dataset.ImageNetProducer(
        file_list=args.file_list,
        data_path=args.input_dir,
        num_images=args.num_images,
        need_rescale=args.need_rescale,
        data_spec=data_spec,
        batch_size=1)

    print 'Start compute gradients'
    if args.noise_file is None:
        gradients = calc_gradients(
            sesh, 
            image_producer, 
            input_node, 
            probs_output, 
            data_spec, 
            args.use_sign, 
            targets)
    else:
        gradients = np.load(args.noise_file)
        if args.use_sign:
            gradients = np.sign(gradients)
    print 'End compute gradients'
    gradients /= np.sqrt(np.mean(np.square(gradients))) // Why there is a normalization?
    print 'RMSE of gradients', np.sqrt(np.mean(np.square(gradients)))

    for magnitude in range(1, args.num_iter + 1):
        distance = save_file(sesh, image_producer, 
                             os.path.join(args.output_dir, str(magnitude)), 
                             gradients * magnitude / 255.0 * 
                                 (data_spec.rescale[1] - data_spec.rescale[0]),
                             data_spec)
Esempio n. 26
0
def classify(model_data_path, image_pathFolder):
    '''Classify the given images using VGG16.'''

    #print(model_data_path)
    #print(image_pathFolder)
    image_paths = []
    for filename in os.listdir(image_pathFolder):
        image_paths.append(image_pathFolder + filename)
    #print(image_paths)

    # Get the data specifications for the VggNet model
    spec = models.get_data_spec(model_class=models.VGG16)
    ##print(spec)
    # Create a placeholder for the input image
    input_node = tf.placeholder(tf.float32,
                                shape=(None, spec.crop_size, spec.crop_size,
                                       spec.channels))
    #print(input_node)

    # Construct the network
    net = models.VGG16({'data': input_node})
    #print("net---------------------")

    # Create an image producer (loads and processes images in parallel)
    image_producer = dataset.ImageProducer(image_paths=image_paths,
                                           data_spec=spec)
    #print(image_producer)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    #tf.ConfigProto()
    log_device_placement = True  # 是否打印设备分配日志
    allow_soft_placement = False  # 如果你指定的设备不存在,允许TF自动分配设备
    config = tf.ConfigProto(log_device_placement=True,
                            allow_soft_placement=False)
    with tf.Session(config=config) as sesh:
        #print('start  -----------------------------------------------------------------%s' % datetime.now())
        #sesh.run(tf.global_variables_initializer())
        # Start the image processing workers
        coordinator = tf.train.Coordinator()
        threads = image_producer.start(session=sesh, coordinator=coordinator)

        # Load the converted parameters
        #print('Loading the model -----------------------------------------------------------------%s' % datetime.now())
        net.load(model_data_path, sesh)

        # Load the input image
        #print('Loading the images-----------------------------------------------------------------%s' % datetime.now())
        indices, input_images = image_producer.get(sesh)

        # Perform a forward pass through the network to get the class probabilities
        print(
            'Classifying        -----------------------------------------------------------------%s'
            % datetime.now())
        probs = sesh.run(net.get_output(),
                         feed_dict={input_node: input_images})
        print(
            'Classifying END    -----------------------------------------------------------------%s'
            % datetime.now())
        display_results([image_paths[i] for i in indices], probs)

        # Stop the worker threads
        coordinator.request_stop()
        coordinator.join(threads, stop_grace_period_secs=2)