def create():
    url = 'https://storage.googleapis.com/luizgh-datasets/avc_models/resnext50_32x4d_ddn.pt'
    weights_path = zoo.fetch_weights(url)
    state_dict = torch.load(weights_path)

    image_mean = torch.tensor([0.4802, 0.4481, 0.3975]).view(1, 3, 1, 1)
    image_std = torch.tensor([0.2770, 0.2691, 0.2821]).view(1, 3, 1, 1)
    m = resnext50_32x4d()
    model = NormalizedModel(model=m, mean=image_mean, std=image_std)
    model.load_state_dict(state_dict)
    model.eval()

    fmodel = foolbox.models.PyTorchModel(model, (0, 1), num_classes=200)

    return fmodel
Esempio n. 2
0
        m = resnet18()
        attacks = [
            DDN(100, device=device),
        ]
        model = NormalizedModel(m, image_mean, image_std)
        state_dict = torch.load(args.model_path)
        model.load_state_dict(state_dict)
        model.eval().to(device)

        def black_box_model(img):
            t_img = torch.from_numpy(img).float().div(255).permute(2, 0, 1)
            t_img = t_img.unsqueeze(0).to(device)
            with torch.no_grad():
                return model(t_img).argmax()

        smodel = resnext50_32x4d()
        smodel = NormalizedModel(smodel, image_mean, image_std)
        state_dict = torch.load(args.surrogate_model_path)
        smodel.load_state_dict(state_dict)
        smodel.eval().to(device)
        surrogate_models = [smodel]
        label = black_box_model(img)
        t_img = torch.from_numpy(img).float().div(255).permute(2, 0,
                                                               1).unsqueeze(0)
        t_img = t_img.to(device)

        # When the label predicted by the avatar model is not equal to that predicted by the attack model
        if smodel(t_img).argmax() != black_box_model(img):
            adv, test_num = untagetattack(model=black_box_model,
                                          s_models=surrogate_models,
                                          attacks=attacks,
Esempio n. 3
0
def deploy(file_path=None,
           uploaded_image=uploaded_image,
           uploaded=False,
           demo=True):
    #Load the model and the weights
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = resnext50_32x4d(CFG.model_name, pretrained=False)
    states = [load_state(my_path + '/weights/resnext50_32x4d_fold0_best.pth')]

    #For Grad-cam features
    final_conv = model.model.layer4[2]._modules.get('conv3')
    fc_params = list(model.model._modules.get('fc').parameters())

    #Display the uploaded/selected image
    st.markdown('***')
    st.markdown(model_predicting, unsafe_allow_html=True)
    if demo:
        test_loader = Loader(img_path=file_path)
        image_1 = cv2.imread(file_path)
    if uploaded:
        test_loader = Loader(uploaded_image=uploaded_image,
                             upload_state=True,
                             demo_state=False)
        image_1 = file_path
    st.sidebar.markdown(image_uploaded_success, unsafe_allow_html=True)
    st.sidebar.image(image_1, width=301, channels='BGR')

    for img in test_loader:
        activated_features = SaveFeatures(final_conv)
        #Save weight from fc
        weight = np.squeeze(fc_params[0].cpu().data.numpy())

        #Inference
        logits, output = inference(model, states, img, device)
        pred_idx = output.to('cpu').numpy().argmax(1)

        #Grad-cam image display
        cur_images = img.cpu().numpy().transpose((0, 2, 3, 1))
        heatmap = getCAM(activated_features.features, weight, pred_idx)
        plt.imshow(
            cv2.cvtColor((cur_images[0] * 255).astype('uint8'),
                         cv2.COLOR_BGR2RGB))
        plt.imshow(cv2.resize((heatmap * 255).astype('uint8'), (328, 328),
                              interpolation=cv2.INTER_LINEAR),
                   alpha=0.4,
                   cmap='jet')
        plt.savefig(output_image)

        #Display Unknown class if the highest probability is lower than 0.5
        if np.amax(logits) < 0.57:
            st.markdown(unknown, unsafe_allow_html=True)
            st.sidebar.markdown(unknown_side, unsafe_allow_html=True)
            st.sidebar.markdown(unknown_w, unsafe_allow_html=True)

        #Display the class predicted if the highest probability is higher than 0.5
        else:
            if pred_idx[0] == 0:
                st.markdown(class0, unsafe_allow_html=True)
                st.sidebar.markdown(class0_side, unsafe_allow_html=True)
                st.write(
                    " The predicted class is: **Cassava Bacterial Blight (CBB)**"
                )
            elif pred_idx[0] == 1:
                st.markdown(class1, unsafe_allow_html=True)
                st.sidebar.markdown(class1_side, unsafe_allow_html=True)
                st.write(
                    "The predicted class is: **Cassava Brown Streak Disease (CBSD)**"
                )
            elif pred_idx[0] == 2:
                st.markdown(class2, unsafe_allow_html=True)
                st.sidebar.markdown(class2_side, unsafe_allow_html=True)
                st.write(
                    "The predicted class is: **Cassava Green Mottle (CGM)**")
            elif pred_idx[0] == 3:
                st.markdown(class3, unsafe_allow_html=True)
                st.sidebar.markdown(class3_side, unsafe_allow_html=True)
                st.write(
                    "The predicted class is: **Cassava Mosaic Disease (CMD)**")
            elif pred_idx[0] == 4:
                st.markdown(class4, unsafe_allow_html=True)
                st.sidebar.markdown(class4_side, unsafe_allow_html=True)
                st.write("The predicted class is: **Healthy**")

        st.sidebar.markdown(
            '**Scroll down to read the full report (Grad-cam and class probabilities)**'
        )

        #Display the Grad-Cam image
        st.title('**Grad-cam visualization**')
        st.write(
            'Grad-cam highlights the important regions in the image for predicting the class concept. It helps to understand if the model based its predictions on the correct regions of the image.'
        )
        st.write(
            '*Grad-Cam is facing some color channels conflict. I am working on fixing the bug!*'
        )
        gram_im = cv2.imread(output_image)
        st.image(gram_im, width=528, channels='RGB')

        #Display the class probabilities table
        st.title('**Class predictions:**')
        if np.amax(logits) < 0.57:
            st.markdown(unknown_msg, unsafe_allow_html=True)
        classes['class probability %'] = logits.reshape(-1).tolist()
        classes['class probability %'] = classes['class probability %'] * 100
        classes_proba = classes.style.background_gradient(cmap='Reds')
        st.write(classes_proba)
        del model, states, fc_params, final_conv, test_loader, image_1, activated_features, weight, cur_images, heatmap, gram_im, logits, output, pred_idx, classes_proba
        gc.collect()
Esempio n. 4
0
def load_state(model_path):
    model = resnext50_32x4d(CFG.model_name, pretrained=False)
    model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['model'], strict=True)
    state_dict = torch.load(model_path, map_location=torch.device('cpu'))['model']
    return state_dict