def update_argparser(parser): models.update_argparser(parser) args, _ = parser.parse_known_args() parser.add_argument('--num_blocks', help='Number of residual blocks in networks.', default=16, type=int) parser.add_argument('--num_residual_units', help='Number of residual units in networks.', default=32, type=int) parser.add_argument('--width_multiplier', help='Width multiplier inside residual blocks.', default=4, type=float) parser.add_argument('--temporal_size', help='Number of frames for burst input.', default=None, type=int) if args.dataset.startswith('div2k'): parser.set_defaults( train_epochs=30, learning_rate_milestones=(20, 25), learning_rate_decay=0.2, save_checkpoints_epochs=1, lr_patch_size=48, train_temporal_size=1, eval_temporal_size=1, ) else: raise NotImplementedError( 'Needs to tune hyper parameters for new dataset.')
def update_argparser(parser): models.update_argparser(parser) args, _ = parser.parse_known_args() if args.dataset.startswith('video'): parser.add_argument('--num-blocks', help='Number of residual blocks in networks', default=16, type=int) parser.add_argument('--num-residual-units', help='Number of residual units in networks', default=32, type=int) parser.add_argument('--width_multiplier', help='Width multiplier inside residual blocks', default=4, type=int) parser.set_defaults( train_epochs=20, learning_rate_milestones=(15, 18), save_checkpoints_epochs=1, lr_patch_size=64, train_temporal_size=1, eval_temporal_size=1, ) else: raise NotImplementedError( 'Needs to tune hyper parameters for new dataset.')
def update_argparser(parser): models.update_argparser(parser) args, _ = parser.parse_known_args() parser.add_argument('--num-steps', help='Number of steps in recurrent networks', default=12, type=int) parser.add_argument('--num-filters', help='Number of filters in networks', default=128, type=int) parser.add_argument('--non-local-field-size', help='Size of receptive field in non-local blocks', default=35, type=int) parser.add_argument( '--init-ckpt', help='Checkpoint path to initialize', default=None, type=str, ) parser.set_defaults( train_steps=500000, learning_rate=((100000, 200000, 300000, 400000, 450000), (1e-3, 5e-4, 2.5e-4, 1.25e-4, 6.25e-5, 3.125e-5)), save_checkpoints_steps=20000, save_summary_steps=1000, )
def update_argparser(parser): models.update_argparser(parser) args, _ = parser.parse_known_args() if args.dataset == 'cifar10': parser.add_argument('--num-layers', help='Number of layers in networks', default=110, type=int) parser.add_argument('--mixup', help='Hyper parameter for mixup training', default=0.0, type=float) parser.set_defaults( train_steps=150000, learning_rate=((32000, 48000, 120000), (0.1, 0.01, 0.001, 0.0002)), save_checkpoints_steps=5000, ) else: raise NotImplementedError( 'Needs to tune hyper parameters for new dataset.')
def update_argparser(parser): models.update_argparser(parser) args, _ = parser.parse_known_args() if args.dataset == 'div2k': parser.add_argument('--num-blocks', help='Number of residual blocks in networks', default=16, type=int) parser.add_argument('--num-residual-units', help='Number of residual units in networks', default=64, type=int) parser.set_defaults( train_steps=1500000, learning_rate=((1000000, ), (1e-4, 5e-5)), save_checkpoints_steps=50000, save_summary_steps=10000, ) else: raise NotImplementedError( 'Needs to tune hyper parameters for new dataset.')