def train(): params = {'batch_size': opt.batch_size, 'shuffle': True, 'num_workers': 0} torch.backends.cudnn.benchmark = True training_set = DatasetCUB(opt) training_generator = data.DataLoader(training_set, **params) test_set = DatasetCUB(opt,train=False) test_generator = data.DataLoader(test_set, **params) netA=Attention(text_dim=training_set.text_dim, dimensions=training_set.feature_dim).cuda() netA.apply(weights_init) optimizerA = optim.Adam(netA.parameters(), lr=opt.lr, betas=(0.5, 0.9), weight_decay=0.0001) # criterion = torch.nn.CrossEntropyLoss() # why use cross entropy when already applied softmax criterion = torch.nn.NLLLoss() text_feat=Variable(torch.tensor(training_set.train_text_feature)).unsqueeze(0).cuda() text_feat_test=Variable(torch.tensor(training_set.test_text_feature)).unsqueeze(0).cuda() for it in range(opt.max_epoch): print('epoch: ', it) for bi, batch in enumerate(training_generator): images, labels = batch image_representation, y_true = Variable(images).cuda(), labels.cuda() attention_weights,attention_scores=netA(image_representation,text_feat) loss = criterion(attention_weights.squeeze(), y_true.long()) topv, topi = attention_scores.squeeze().data.topk(1) compare_pred_ground = topi.squeeze() == y_true correct = np.count_nonzero(compare_pred_ground.cpu() == 1) optimizerA.zero_grad() loss.backward() optimizerA.step() # print("it:", it) # print('train accuracy:', correct / y_true.shape[0]) netA.eval() correct=0 for bi, batch in enumerate(test_generator): images, labels = batch image_representation, y_true = Variable(images).cuda(), labels.cuda() attention_weights, attention_scores = netA(image_representation, text_feat_test) topv, topi = attention_weights.squeeze().data.topk(1) correct+=torch.sum(topi.squeeze()==y_true).cpu().tolist() print (test_set.pfc_feat_data_test.shape) print('test accuracy:', 100 * correct / test_set.pfc_feat_data_test.shape[0]) GZSL_evaluation(text_feat, text_feat_test,training_set.train_cls_num,training_generator,test_generator,netA) netA.train()
def train(): # Fix Seed for Reproducibility # torch.manual_seed(9) if torch.cuda.is_available(): torch.cuda.manual_seed(9) # Samples, Weights and Results Path # paths = [config.samples_path, config.weights_path, config.plots_path] paths = [make_dirs(path) for path in paths] # Prepare Data Loader # train_horse_loader, train_zebra_loader = get_horse2zebra_loader('train', config.batch_size) val_horse_loader, val_zebra_loader = get_horse2zebra_loader('test', config.batch_size) total_batch = min(len(train_horse_loader), len(train_zebra_loader)) # Image Pool # masked_fake_A_pool = ImageMaskPool(config.pool_size) masked_fake_B_pool = ImageMaskPool(config.pool_size) # Prepare Networks # Attn_A = Attention() Attn_B = Attention() G_A2B = Generator() G_B2A = Generator() D_A = Discriminator() D_B = Discriminator() networks = [Attn_A, Attn_B, G_A2B, G_B2A, D_A, D_B] for network in networks: network.to(device) # Loss Function # criterion_Adversarial = nn.MSELoss() criterion_Cycle = nn.L1Loss() # Optimizers # D_optim = torch.optim.Adam(chain(D_A.parameters(), D_B.parameters()), lr=config.lr, betas=(0.5, 0.999)) G_optim = torch.optim.Adam(chain(Attn_A.parameters(), Attn_B.parameters(), G_A2B.parameters(), G_B2A.parameters()), lr=config.lr, betas=(0.5, 0.999)) D_optim_scheduler = get_lr_scheduler(D_optim) G_optim_scheduler = get_lr_scheduler(G_optim) # Lists # D_A_losses, D_B_losses = [], [] G_A_losses, G_B_losses = [], [] # Train # print("Training Unsupervised Attention-Guided GAN started with total epoch of {}.".format(config.num_epochs)) for epoch in range(config.num_epochs): for i, (real_A, real_B) in enumerate(zip(train_horse_loader, train_zebra_loader)): # Data Preparation # real_A = real_A.to(device) real_B = real_B.to(device) # Initialize Optimizers # D_optim.zero_grad() G_optim.zero_grad() ################### # Train Generator # ################### set_requires_grad([D_A, D_B], requires_grad=False) # Adversarial Loss using real A # attn_A = Attn_A(real_A) fake_B = G_A2B(real_A) masked_fake_B = fake_B * attn_A + real_A * (1-attn_A) masked_fake_B *= attn_A prob_real_A = D_A(masked_fake_B) real_labels = torch.ones(prob_real_A.size()).to(device) G_loss_A = criterion_Adversarial(prob_real_A, real_labels) # Adversarial Loss using real B # attn_B = Attn_B(real_B) fake_A = G_B2A(real_B) masked_fake_A = fake_A * attn_B + real_B * (1-attn_B) masked_fake_A *= attn_B prob_real_B = D_B(masked_fake_A) real_labels = torch.ones(prob_real_B.size()).to(device) G_loss_B = criterion_Adversarial(prob_real_B, real_labels) # Cycle Consistency Loss using real A # attn_ABA = Attn_B(masked_fake_B) fake_ABA = G_B2A(masked_fake_B) masked_fake_ABA = fake_ABA * attn_ABA + masked_fake_B * (1 - attn_ABA) # Cycle Consistency Loss using real B # attn_BAB = Attn_A(masked_fake_A) fake_BAB = G_A2B(masked_fake_A) masked_fake_BAB = fake_BAB * attn_BAB + masked_fake_A * (1 - attn_BAB) # Cycle Consistency Loss # G_cycle_loss_A = config.lambda_cycle * criterion_Cycle(masked_fake_ABA, real_A) G_cycle_loss_B = config.lambda_cycle * criterion_Cycle(masked_fake_BAB, real_B) # Total Generator Loss # G_loss = G_loss_A + G_loss_B + G_cycle_loss_A + G_cycle_loss_B # Back Propagation and Update # G_loss.backward() G_optim.step() ####################### # Train Discriminator # ####################### set_requires_grad([D_A, D_B], requires_grad=True) # Train Discriminator A using real A # prob_real_A = D_A(real_B) real_labels = torch.ones(prob_real_A.size()).to(device) D_loss_real_A = criterion_Adversarial(prob_real_A, real_labels) # Add Pooling # masked_fake_B, attn_A = masked_fake_B_pool.query(masked_fake_B, attn_A) masked_fake_B *= attn_A # Train Discriminator A using fake B # prob_fake_B = D_A(masked_fake_B.detach()) fake_labels = torch.zeros(prob_fake_B.size()).to(device) D_loss_fake_A = criterion_Adversarial(prob_fake_B, fake_labels) D_loss_A = (D_loss_real_A + D_loss_fake_A).mean() # Train Discriminator B using real B # prob_real_B = D_B(real_A) real_labels = torch.ones(prob_real_B.size()).to(device) D_loss_real_B = criterion_Adversarial(prob_real_B, real_labels) # Add Pooling # masked_fake_A, attn_B = masked_fake_A_pool.query(masked_fake_A, attn_B) masked_fake_A *= attn_B # Train Discriminator B using fake A # prob_fake_A = D_B(masked_fake_A.detach()) fake_labels = torch.zeros(prob_fake_A.size()).to(device) D_loss_fake_B = criterion_Adversarial(prob_fake_A, fake_labels) D_loss_B = (D_loss_real_B + D_loss_fake_B).mean() # Calculate Total Discriminator Loss # D_loss = D_loss_A + D_loss_B # Back Propagation and Update # D_loss.backward() D_optim.step() # Add items to Lists # D_A_losses.append(D_loss_A.item()) D_B_losses.append(D_loss_B.item()) G_A_losses.append(G_loss_A.item()) G_B_losses.append(G_loss_B.item()) #################### # Print Statistics # #################### if (i+1) % config.print_every == 0: print("UAG-GAN | Epoch [{}/{}] | Iteration [{}/{}] | D A Losses {:.4f} | D B Losses {:.4f} | G A Losses {:.4f} | G B Losses {:.4f}". format(epoch+1, config.num_epochs, i+1, total_batch, np.average(D_A_losses), np.average(D_B_losses), np.average(G_A_losses), np.average(G_B_losses))) # Save Sample Images # save_samples(val_horse_loader, val_zebra_loader, G_A2B, G_B2A, Attn_A, Attn_B, epoch, config.samples_path) # Adjust Learning Rate # D_optim_scheduler.step() G_optim_scheduler.step() # Save Model Weights # if (epoch + 1) % config.save_every == 0: torch.save(G_A2B.state_dict(), os.path.join(config.weights_path, 'UAG-GAN_Generator_A2B_Epoch_{}.pkl'.format(epoch+1))) torch.save(G_B2A.state_dict(), os.path.join(config.weights_path, 'UAG-GAN_Generator_B2A_Epoch_{}.pkl'.format(epoch+1))) torch.save(Attn_A.state_dict(), os.path.join(config.weights_path, 'UAG-GAN_Attention_A_Epoch_{}.pkl'.format(epoch+1))) torch.save(Attn_B.state_dict(), os.path.join(config.weights_path, 'UAG-GAN_Attention_B_Epoch_{}.pkl'.format(epoch+1))) # Make a GIF file # make_gifs_train("UAG-GAN", config.samples_path) # Plot Losses # plot_losses(D_A_losses, D_B_losses, G_A_losses, G_B_losses, config.num_epochs, config.plots_path) print("Training finished.")
convert_gender=True, ) print(val_dataset.__len__()) val_loader = DataLoader(val_dataset, batch_size=batch_size) use_cuda = torch.cuda.is_available() if use_cuda: print("Using GPU") model.cuda() else: print("Not using CPU") optimizer = torch.optim.Adam( model.parameters(), lr=0.001) #torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.0001) def train(permute=True): model.train() conf_matrix = np.zeros((2, 2)) for i, (annotation, bag, targets) in enumerate(tqdm(train_loader)): # print("in batch {}".format(i)) if permute: bag = bag.permute(0, 2, 1, 3, 4) targets = torch.stack(targets).T if use_cuda: bag, targets = bag.cuda(), targets.cuda() for key, value in annotation.items():