Esempio n. 1
0
    def train(self):
        # Placeholders for Tensorboard
        adv_tensor = tf.placeholder(tf.float32, shape = [], name = "Advantage")
        test_rmse  = tf.placeholder(tf.float32, shape = [], name = "Test_RMSE")
        test_ssim  = tf.placeholder(tf.float32, shape = [], name = "Test_SSIM")
        test_psnr  = tf.placeholder(tf.float32, shape = [], name = "Test_psnr")
        closs      = tf.placeholder(tf.float32, shape = [], name = "Controller_Loss")
        im_result  = tf.placeholder(tf.uint8, shape = [1, 8 * self.image_shape[0], 3 * self.image_shape[1], self.image_shape[2]], name = "Input_Placeholder")

        # Histogram summaries
        softmax_histograms, tensors = softmax_summaries()

        # Summaries
        summ_rmse        = tf.summary.scalar('RMSE', test_rmse)
        summ_ssim        = tf.summary.scalar('SSIM', test_ssim)
        summ_psnr        = tf.summary.scalar('PSNR', test_psnr)
        summ_rew         = tf.summary.scalar('Advantage', adv_tensor)
        summ_closs       = tf.summary.scalar('Controller_Loss', closs)
        summ_denoising   = tf.summary.image('Denoising_Results', im_result)
        merged           = tf.summary.merge([summ_rmse, summ_psnr, summ_ssim, summ_rew])
        tf.global_variables_initializer().run(session = self.session)
        self.writer = tf.summary.FileWriter(os.path.join(LOG_DIR, "training_monitor"), graph = self.session.graph)
        
        # Learning loop
        mem_softmaxes = [] # Softmax memory
        mem_rewards   = [] # Reward memory
        mem_advantage = [] # Advantage memory
        old_softmax   = np.zeros([1, *INPUT_SHAPE])
        print("Starting Controller training")
        for epoch in range(self.n_epochs):
            start_epoch = time.time()
            print("Epoch\t{}/{}".format(epoch, self.n_epochs)  + 149 * "-")
            # Policy prediction
            softmaxes, subpolicies = self.sample_policy(old_softmax)

            # Updates old softmax
            old_softmax = np.expand_dims(np.concatenate(softmaxes[-6:], axis = 1), axis = -1)

            # Softmax memory
            mem_softmaxes.append(softmaxes)

            # Creates new child and trains it
            child = Autoencoder(self.dataset, n_epochs = 250, n_stages = 20, test_runs = 50, lr = 0.02, decay = 0.1)
            train_start = time.time()
            child.train(policy = subpolicies, do_valid = False)
            elapsed = time.time() - train_start
            print("Training time:\t{}".format(timedelta(seconds = elapsed)))

            # Logging training data into tensorboard
            train_start = time.time()
            loss, ssim, rmse, psnr = child.test() # Evaluates training results
            elapsed = time.time() - train_start
            reward    = psnr                      # Epoch reward
            mem_rewards.append(reward)            # Keeps a memory of rewards
            baseline  = get_baseline(mem_rewards) # Simple moving average
            advantage = reward - baseline         # Computes advantage
            mem_advantage.append(advantage)       # Keeps a memory of advantages
            print("Eval time:\t{}".format(timedelta(seconds = elapsed)))

            # Saving child model
            self.saver(child.model, subpolicies, mem_rewards[-1])

            # Weight update
            if len(mem_softmaxes) > 5:
                # Perform backprop only if we have enough softmaxes in memory
                controller_loss = self.fit(mem_softmaxes, mem_advantage, epoch)
                self.model.save_weights(os.path.join(LOG_DIR, "controller_model/model.h5"))
                closs_summary = self.session.run(summ_closs, feed_dict = {closs : controller_loss})
                self.writer.add_summary(closs_summary, epoch)

            # Logging data into tensorboard

            # Scalar summaries
            feed_dict = {
                test_rmse  : rmse,
                test_ssim  : 1 - ssim,
                test_psnr  : psnr,
                adv_tensor : advantage
            }

            summ = self.session.run(merged, feed_dict = feed_dict)
            self.writer.add_summary(summ, epoch)

            print("SSIM: \t\t{}".format(1 - ssim))
            print("RMSE: \t\t{}".format(rmse))
            print("PSNR: \t\t{}".format(psnr))
            print("Reward: \t{}".format(mem_rewards[-1]))
            # Images and histograms
            if epoch % 10 == 0:
                # Image summary
                x, y, r = child.inference() 
                
                # Converts 8 first samples to uint8
                noise    = np.uint8(255 * x[0:8]) 
                original = np.uint8(255 * y[0:8])
                denoised = np.uint8(255 * r[0:8])

                # Stacking images per batch
                a = np.vstack([noise[i]    for i in range(len(noise))])
                b = np.vstack([original[i] for i in range(len(original))])
                c = np.vstack([denoised[i] for i in range(len(denoised))])

                # Stacking batches side-by-side
                img = np.expand_dims(np.hstack([a, b, c]), 0)

                img_summ = self.session.run(summ_denoising, feed_dict = {im_result: img})
                self.writer.add_summary(img_summ, epoch)
                # Histograms
                type_softmaxes = [softmaxes[0], softmaxes[3]]
                prob_softmaxes = [softmaxes[1], softmaxes[4]]
                magn_softmaxes = [softmaxes[2], softmaxes[5]]
                feed_hist = feed_histogram_summaries(*tensors, type_softmaxes, prob_softmaxes, magn_softmaxes)
                
                soft_summ = self.session.run(softmax_histograms, feed_dict = feed_hist)
                self.writer.add_summary(soft_summ, epoch)
            print("Epoch took:\t{}".format(timedelta(seconds = time.time() - start_epoch)))
Esempio n. 2
0
weights_ = model.get_weights()
for idx, w in weights_.items():
    with open("results/{2}/weight_{1}_{0}.pickle".format("_".join([str(x) for x in params['network_shape'][1:-1]]), idx, MODEL_NAME), 'wb') as f:
        data_w = np.sum(np.abs(w), 1)
        pickle.dump(data_w, f)

activation_dicts = {k: {} for k in params['activation_pattern_layers']}
sum_of_act_dicts = {k: [] for k in params['activation_pattern_layers']}
for epoch in range(inference_epochs):
    total_batch=int(n_test_samples / batch_size)
    # Loop over all batches
    for i in range(total_batch):
        batch_xs, _ = get_random_block_from_data(X_test, Y_test, batch_size)

        cost = model.inference(batch_xs)
        activation_patterns = model.get_activations(batch_xs)
        for j, act_patt in activation_patterns.items():
            current_act_dict = activation_dicts[j]
            sum_of_act_dicts[j] += np.mean(act_patt, 1).tolist()
            for single_act_patt in act_patt:
                nonzero_tup = tuple(np.nonzero(single_act_patt)[0])
                if nonzero_tup in current_act_dict:
                    current_act_dict[nonzero_tup] += 1
                else:
                    current_act_dict[nonzero_tup] = 1
            activation_dicts[j] = current_act_dict

with open("results/{1}/sum_act_{0}.pickle".format("_".join([str(x) for x in params['network_shape'][1:-1]]), MODEL_NAME), 'wb') as sum_act_f:
    pickle.dump(sum_of_act_dicts, sum_act_f)