Esempio n. 1
0
class ModelsHandler:
    input_shape: tuple
    num_actions: int
    lr: float = field(default=0.001)

    def __post_init__(self):
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.model = ConvNet(self.input_shape, self.num_actions,
                             self.lr).to(self.device)
        self.tgt_model = ConvNet(self.input_shape, self.num_actions,
                                 self.lr).to(self.device)
        self.model_update_count = 0
        self.current_loss = 0

    def train_step(self, rb: ReplayBuffer, sample_size=300):
        # loss calcualation
        trans_sts = rb.sample(sample_size)
        states = torch.stack([trans.state_tensor
                              for trans in trans_sts]).to(self.device)
        next_states = torch.stack(
            [trans.next_state_tensor for trans in trans_sts]).to(self.device)
        not_done = torch.Tensor([trans.not_done_tensor
                                 for trans in trans_sts]).to(self.device)
        actions = [trans.action for trans in trans_sts]
        rewards = torch.stack([trans.reward_tensor
                               for trans in trans_sts]).to(self.device)

        with torch.no_grad():
            qvals_predicted = self.tgt_model(next_states).max(-1)

        self.model.optimizer.zero_grad()
        qvals_current = self.model(states)
        one_hot_actions = torch.nn.functional.one_hot(
            torch.LongTensor(actions), self.num_actions).to(self.device)
        loss = ((rewards + (not_done * qvals_predicted.values) -
                 torch.sum(qvals_current * one_hot_actions, -1))**2).mean()
        loss.backward()
        self.model.optimizer.step()
        return loss.detach().item()

    def update_target_model(self):
        state_dict = deepcopy(self.model.state_dict())
        self.tgt_model.load_state_dict(state_dict)
        self.model_update_count += 1

    def save_target_model(self):
        file_name = f"{datetime.now().strftime('%H:%M:%S')}.pth"
        temp_dir = os.environ.get('TMPDIR', '/tmp')
        file_name = os.path.join(temp_dir, file_name)
        torch.save(self.model, file_name)
        wandb.save(file_name)
#net.set_masks(masks)
#print("--- {}% parameters pruned ---".format(param['pruning_perc']))
test(new_net, loader_test)

# Retraining
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.RMSprop(new_net.parameters(),
                                lr=param['learning_rate'],
                                weight_decay=param['weight_decay'])

train(new_net, criterion, optimizer, param, loader_train)

# Check accuracy and nonzeros weights in each layer
print("--- After retraining ---")
test(new_net, loader_test)

# Save and load the entire model
#torch.save(net.state_dict(), 'models/convnet_pruned.pkl')
import os

torch.save({
    'cfg': cfg,
    'state_dict': new_net.state_dict()
}, os.path.join('models', 'conv-pruned1.pth.tar'))

checkpoint = torch.load('models/conv-pruned1.pth.tar')
net2 = ConvNet(checkpoint['cfg'])
net2.load_state_dict(checkpoint['state_dict'])

print(sum([param.nelement() for param in net2.parameters()]))
test(net2, loader_test)
Esempio n. 3
0
# Load the pretrained model
net = ConvNet()
net.load_state_dict(torch.load('models/convnet_pretrained.pkl'))
if torch.cuda.is_available():
    print('CUDA ensabled.')
    net.cuda()
print("--- Pretrained network loaded ---")
test(net, loader_test)

# prune the weights
masks = filter_prune(net, param['pruning_perc'])
net.set_masks(masks)
print("--- {}% parameters pruned ---".format(param['pruning_perc']))
test(net, loader_test)

# Retraining
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.RMSprop(net.parameters(),
                                lr=param['learning_rate'],
                                weight_decay=param['weight_decay'])

train(net, criterion, optimizer, param, loader_train)

# Check accuracy and nonzeros weights in each layer
print("--- After retraining ---")
test(net, loader_test)
prune_rate(net)

# Save and load the entire model
torch.save(net.state_dict(), 'models/convnet_pruned.pkl')
Esempio n. 4
0
def main():
    # data normalization
    input_size = 224
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    # data loaders
    kwargs = {'num_workers': 8, 'pin_memory': True} if args.cuda else {}

    if args.da:
        train_transforms = transforms.Compose([
            random_transform,
            transforms.ToPILImage(),
            transforms.Resize((input_size, input_size)),
            transforms.ToTensor(), normalize
        ])
    else:
        train_transforms = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Resize((input_size, input_size)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(), normalize
        ])

    test_transforms = transforms.Compose([
        transforms.ToPILImage(),
        transforms.Resize((input_size, input_size)),
        transforms.ToTensor(), normalize
    ])

    train_loader = torch.utils.data.DataLoader(DataLoader(df_train,
                                                          train_transforms,
                                                          root=args.data_dir,
                                                          mode=args.mode),
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               **kwargs)

    test_loader = torch.utils.data.DataLoader(DataLoader(df_gal,
                                                         test_transforms,
                                                         root=args.data_dir,
                                                         mode=args.mode),
                                              batch_size=args.batch_size,
                                              shuffle=False,
                                              **kwargs)

    # instanciate the models
    output_shape, backbone = get_backbone(args)
    embed = LinearProjection(output_shape, args.dim_embed)
    model = ConvNet(backbone, embed)

    # instanciate the proxies
    fsem = get_semantic_fname(args.word)
    path_semantic = os.path.join('aux', 'Semantic', args.dataset, fsem)
    train_proxies = get_proxies(path_semantic, df_train['cat'].cat.categories)
    test_proxies = get_proxies(path_semantic, df_gal['cat'].cat.categories)

    train_proxynet = ProxyNet(args.n_classes,
                              args.dim_embed,
                              proxies=torch.from_numpy(train_proxies))
    test_proxynet = ProxyNet(args.n_classes_gal,
                             args.dim_embed,
                             proxies=torch.from_numpy(test_proxies))

    # criterion
    criterion = ProxyLoss(args.temperature)

    if args.multi_gpu:
        model = nn.DataParallel(model)

    if args.cuda:
        backbone.cuda()
        embed.cuda()
        model.cuda()
        train_proxynet.cuda()
        test_proxynet.cuda()

    parameters_set = []

    low_layers = []
    upper_layers = []

    for c in backbone.children():
        low_layers.extend(list(c.parameters()))
    for c in embed.children():
        upper_layers.extend(list(c.parameters()))

    parameters_set.append({
        'params': low_layers,
        'lr': args.lr * args.factor_lower
    })
    parameters_set.append({'params': upper_layers, 'lr': args.lr * 1.})

    optimizer = optim.SGD(parameters_set,
                          lr=args.lr,
                          momentum=0.9,
                          nesterov=True,
                          weight_decay=args.wd)

    n_parameters = sum([p.data.nelement() for p in model.parameters()])
    print('  + Number of params: {}'.format(n_parameters))

    scheduler = CosineAnnealingLR(optimizer,
                                  args.epochs * len(train_loader),
                                  eta_min=3e-6)

    print('Starting training...')
    for epoch in range(args.start_epoch, args.epochs + 1):
        # update learning rate
        scheduler.step()

        # train for one epoch
        train(train_loader, model, train_proxynet.proxies.weight, criterion,
              optimizer, epoch, scheduler)

        val_acc = evaluate(test_loader, model, test_proxynet.proxies.weight,
                           criterion)

        # saving
        if epoch == args.epochs:
            save_checkpoint({'epoch': epoch, 'state_dict': model.state_dict()})

    print('\nResults on test set (end of training)')
    write_logs('\nResults on test set (end of training)')
    test_acc = evaluate(test_loader, model, test_proxynet.proxies.weight,
                        criterion)
Esempio n. 5
0
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import copy
import time

from models import ConvNet, nCrossEntropyLoss
from config import DefaultConfig
from data.dataset import data_loader, data, dataset_size
from utils.utils import equal

net = ConvNet()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
loss_func = nCrossEntropyLoss()

best_model_wts = copy.deepcopy(net.state_dict())
best_acc = 0.0

since = time.time()
for epoch in range(DefaultConfig.EPOCH):

    running_loss = 0.0
    running_corrects = 0

    for step, (inputs, label) in enumerate(data_loader):
        # 用 0 填充 LongTensor
        pred = torch.LongTensor(DefaultConfig.BATCH_SIZE, 1).zero_()
        inputs = Variable(inputs)  # (bs, 3, 60, 160)
        label = Variable(label)  # (bs, 4)
        # 梯度清零
        optimizer.zero_grad()
Esempio n. 6
0
def main(args):

    init_process_group(backend='nccl')

    with open(args.config) as file:
        config = json.load(file)
        config.update(vars(args))
        config = apply_dict(Dict, config)

    backends.cudnn.benchmark = True
    backends.cudnn.fastest = True

    cuda.set_device(distributed.get_rank() % cuda.device_count())

    train_dataset = ImageDataset(root=config.train_root,
                                 meta=config.train_meta,
                                 transform=transforms.Compose([
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, ) * 3,
                                                          (0.5, ) * 3)
                                 ]))
    val_dataset = ImageDataset(root=config.val_root,
                               meta=config.val_meta,
                               transform=transforms.Compose([
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, ) * 3,
                                                        (0.5, ) * 3)
                               ]))

    train_sampler = utils.data.distributed.DistributedSampler(train_dataset)
    val_sampler = utils.data.distributed.DistributedSampler(val_dataset)

    train_data_loader = utils.data.DataLoader(
        dataset=train_dataset,
        batch_size=config.local_batch_size,
        sampler=train_sampler,
        num_workers=config.num_workers,
        pin_memory=True)
    val_data_loader = utils.data.DataLoader(dataset=val_dataset,
                                            batch_size=config.local_batch_size,
                                            sampler=val_sampler,
                                            num_workers=config.num_workers,
                                            pin_memory=True)

    model = ConvNet(conv_params=[
        Dict(in_channels=3,
             out_channels=32,
             kernel_size=5,
             padding=2,
             stride=2,
             bias=False),
        Dict(in_channels=32,
             out_channels=64,
             kernel_size=5,
             padding=2,
             stride=2,
             bias=False),
    ],
                    linear_params=[
                        Dict(in_channels=3136,
                             out_channels=1024,
                             kernel_size=1,
                             bias=False),
                        Dict(in_channels=1024,
                             out_channels=10,
                             kernel_size=1,
                             bias=True),
                    ])

    config.global_batch_size = config.local_batch_size * distributed.get_world_size(
    )
    config.optimizer.lr *= config.global_batch_size / config.global_batch_denom
    optimizer = optim.Adam(model.parameters(), **config.optimizer)

    epoch = 0
    global_step = 0
    if config.checkpoint:
        checkpoint = Dict(torch.load(config.checkpoint))
        model.load_state_dict(checkpoint.model_state_dict)
        optimizer.load_state_dict(checkpoint.optimizer_state_dict)
        epoch = checkpoint.last_epoch + 1
        global_step = checkpoint.global_step

    def train(data_loader):
        nonlocal global_step
        model.train()
        for images, labels in data_loader:
            images = images.cuda()
            labels = labels.cuda()
            optimizer.zero_grad()
            logits = model(images)
            loss = nn.functional.cross_entropy(logits, labels)
            loss.backward(retain_graph=True)
            average_gradients(model.parameters())
            optimizer.step()
            predictions = logits.topk(k=1, dim=1)[1].squeeze()
            accuracy = torch.mean((predictions == labels).float())
            average_tensors([loss, accuracy])
            global_step += 1
            dprint(f'[training] epoch: {epoch} global_step: {global_step} '
                   f'loss: {loss:.4f} accuracy: {accuracy:.4f}')

    @torch.no_grad()
    def validate(data_loader):
        model.eval()
        losses = []
        accuracies = []
        for images, labels in data_loader:
            images = images.cuda()
            labels = labels.cuda()
            logits = model(images)
            loss = nn.functional.cross_entropy(logits, labels)
            predictions = logits.topk(k=1, dim=1)[1].squeeze()
            accuracy = torch.mean((predictions == labels).float())
            average_tensors([loss, accuracy])
            losses.append(loss)
            accuracies.append(accuracy)
        loss = torch.mean(torch.stack(losses)).item()
        accuracy = torch.mean(torch.stack(accuracies)).item()
        dprint(f'[validation] epoch: {epoch} global_step: {global_step} '
               f'loss: {loss:.4f} accuracy: {accuracy:.4f}')

    @torch.no_grad()
    def feed(data_loader):
        model.eval()
        for images, _ in data_loader:
            images = images.cuda()
            logits = model(images)

    def save():
        if not distributed.get_rank():
            os.makedirs('checkpoints', exist_ok=True)
            torch.save(
                dict(model_state_dict=model.state_dict(),
                     optimizer_state_dict=optimizer.state_dict(),
                     last_epoch=epoch,
                     global_step=global_step),
                os.path.join('checkpoints', f'epoch_{epoch}'))

    if config.training:
        model.cuda()
        broadcast_tensors(model.state_dict().values())
        for epoch in range(epoch, config.num_training_epochs):
            train_sampler.set_epoch(epoch)
            train(train_data_loader)
            validate(val_data_loader)
            save()

    if config.validation:
        model.cuda()
        broadcast_tensors(model.state_dict().values())
        validate(val_data_loader)

    if config.quantization:
        model.cuda()
        broadcast_tensors(model.state_dict().values())
        with QuantizationEnabler(model):
            with BatchStatsUser(model):
                for epoch in range(epoch, config.num_quantization_epochs):
                    train_sampler.set_epoch(epoch)
                    train(train_data_loader)
                    validate(val_data_loader)
                    save()
            with AverageStatsUser(model):
                for epoch in range(epoch, config.num_quantization_epochs):
                    train_sampler.set_epoch(epoch)
                    train(train_data_loader)
                    validate(val_data_loader)
                    save()