def get_generator_model(): generator = GeneratorResNet(img_shape=img_shape, res_blocks=residual_blocks, c_dim=c_dim) generator.load_state_dict( torch.load(PATH_G, map_location=torch.device('cpu'))) generator.eval() return generator
SCALE_FACTOR = opt.scale_factor MODEL_NAME = opt.model_name hr_shape = (opt.hr_height, opt.hr_width) results = {'Test': {'psnr': [], 'ssim': []}} device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") generator = GeneratorResNet() generator = nn.DataParallel(generator, device_ids=[0, 1, 2]) generator.to(device) # generator.load_state_dict(torch.load("saved_models/generator_%d_%d.pth" % (4,99))) generator.load_state_dict(torch.load("saved_models/" + MODEL_NAME)) generator.eval() test_dataloader = DataLoader( TestImageDataset("../My_dataset/single_channel_100000/%s" % opt.test_dataset_name, hr_shape=hr_shape, scale_factor=opt.scale_factor), # change batch_size=1, shuffle=False, num_workers=opt.n_cpu, ) test_bar = tqdm(test_dataloader, desc='[testing datasets]') test_out_path = 'testing_results/SRF_' + str(SCALE_FACTOR) + '/' if not os.path.exists(test_out_path):