torch.manual_seed(args.manual_seed)
    torch.cuda.manual_seed_all(args.manual_seed)
    np.random.seed(args.manual_seed)

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu

    os.makedirs(args.path, exist_ok=True)

    # build run config from args
    args.lr_schedule_param = None
    args.opt_param = {
        'momentum': args.momentum,
        'nesterov': not args.no_nesterov,
    }
    run_config = ImagenetRunConfig(**args.__dict__)
    print('run_config.save_path', run_config.save_path)
    # debug, adjust run_config
    if args.debug:
        run_config.train_batch_size = 32
        run_config.test_batch_size = 32
        run_config.valid_size = None
        run_config.slice_idx = 20480

    width_stages_str = '-'.join(args.width_stages.split(','))
    # build net from args
    args.width_stages = [int(val) for val in args.width_stages.split(',')]
    args.n_cell_stages = [int(val) for val in args.n_cell_stages.split(',')]
    args.stride_stages = [int(val) for val in args.stride_stages.split(',')]
    args.conv_candidates = [
        '3x3_MBConv3',
Esempio n. 2
0
    torch.manual_seed(args.manual_seed)
    torch.cuda.manual_seed_all(args.manual_seed)
    np.random.seed(args.manual_seed)

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu

    os.makedirs(args.path, exist_ok=True)

    # build run config from args
    args.lr_schedule_param = None
    args.opt_param = {
        'momentum': args.momentum,
        'nesterov': not args.no_nesterov,
    }
    if args.dataset == "imagenet":
        run_config = ImagenetRunConfig(**args.__dict__)
    elif args.dataset == "speech_commands":
        run_config = SpeechCommandsRunConfig(**args.__dict__)
    else:
        raise NotImplementedError

    # debug, adjust run_config
    if args.debug:
        run_config.train_batch_size = 256
        run_config.test_batch_size = 256
        run_config.valid_size = 256
        run_config.n_worker = 0

    width_stages_str = '-'.join(args.width_stages.split(','))
    # build net from args
    args.width_stages = [int(val) for val in args.width_stages.split(',')]
Esempio n. 3
0
def main(args, myargs):
    # args = parser.parse_args()

    torch.manual_seed(args.manual_seed)
    torch.cuda.manual_seed_all(args.manual_seed)
    np.random.seed(args.manual_seed)

    # os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu

    os.makedirs(args.path, exist_ok=True)

    # build run config from args
    args.lr_schedule_param = None
    args.opt_param = {
        'momentum': args.momentum,
        'nesterov': not args.no_nesterov,
    }
    run_config = ImagenetRunConfig(
        **args.__dict__
    )

    # debug, adjust run_config
    if args.debug:
        run_config.train_batch_size = 256
        run_config.test_batch_size = 256
        run_config.valid_size = 256
        run_config.n_worker = 0

    width_stages_str = '-'.join(args.width_stages.split(','))
    # build net from args
    args.width_stages = [int(val) for val in args.width_stages.split(',')]
    args.n_cell_stages = [int(val) for val in args.n_cell_stages.split(',')]
    args.stride_stages = [int(val) for val in args.stride_stages.split(',')]
    args.conv_candidates = [
        '3x3_MBConv3', '3x3_MBConv6',
        '5x5_MBConv3', '5x5_MBConv6',
        '7x7_MBConv3', '7x7_MBConv6',
    ]
    super_net = SuperProxylessNASNets(
        width_stages=args.width_stages, n_cell_stages=args.n_cell_stages, stride_stages=args.stride_stages,
        conv_candidates=args.conv_candidates, n_classes=run_config.data_provider.n_classes, width_mult=args.width_mult,
        bn_param=(args.bn_momentum, args.bn_eps), dropout_rate=args.dropout
    )

    # build arch search config from args
    if args.arch_opt_type == 'adam':
        args.arch_opt_param = {
            'betas': (args.arch_adam_beta1, args.arch_adam_beta2),
            'eps': args.arch_adam_eps,
        }
    else:
        args.arch_opt_param = None
    if args.target_hardware is None:
        args.ref_value = None
    else:
        args.ref_value = ref_values[args.target_hardware]['%.2f' % args.width_mult]
    if args.arch_algo == 'grad':
        from nas_manager import GradientArchSearchConfig
        if args.grad_reg_loss_type == 'add#linear':
            args.grad_reg_loss_params = {'lambda': args.grad_reg_loss_lambda}
        elif args.grad_reg_loss_type == 'mul#log':
            args.grad_reg_loss_params = {
                'alpha': args.grad_reg_loss_alpha,
                'beta': args.grad_reg_loss_beta,
            }
        else:
            args.grad_reg_loss_params = None
        arch_search_config = GradientArchSearchConfig(**args.__dict__)
    elif args.arch_algo == 'rl':
        from nas_manager import RLArchSearchConfig
        arch_search_config = RLArchSearchConfig(**args.__dict__)
    else:
        raise NotImplementedError

    print('Run config:')
    for k, v in run_config.config.items():
        print('\t%s: %s' % (k, v))
    print('Architecture Search config:')
    for k, v in arch_search_config.config.items():
        print('\t%s: %s' % (k, v))

    # arch search run manager
    arch_search_run_manager = ArchSearchRunManager(args.path, super_net, run_config, arch_search_config)

    # resume
    if args.resume:
        try:
            arch_search_run_manager.load_model()
        except Exception:
            from pathlib import Path
            home = str(Path.home())
            warmup_path = os.path.join(
                home, 'Workspace/Exp/arch_search/%s_ProxylessNAS_%.2f_%s/warmup.pth.tar' %
                      (run_config.dataset, args.width_mult, width_stages_str)
            )
            if os.path.exists(warmup_path):
                print('load warmup weights')
                arch_search_run_manager.load_model(model_fname=warmup_path)
            else:
                print('fail to load models')

    # warmup
    if arch_search_run_manager.warmup:
        arch_search_run_manager.warm_up(warmup_epochs=args.warmup_epochs)

    # joint training
    arch_search_run_manager.train(fix_net_weights=args.debug)