Esempio n. 1
0
import os

import init_path
import misc.config as cfg
from misc.utils import concat_feat, get_dataloader, make_cuda, make_variable
from misc.writer import RecordWriter
from models import PCAWrapper, inception_v3

if __name__ == '__main__':
    # init Inception v3 model
    model = make_cuda(
        inception_v3(pretrained=True, transform_input=True, extract_feat=True))
    model.eval()

    # init PCA model
    pca = PCAWrapper(n_components=cfg.n_components,
                     batch_size=cfg.pca_batch_size)
    pca.load_params(filepath=cfg.pca_model)

    # data loader for frames in ingle video
    data_loader = get_dataloader(dataset="VideoFrame",
                                 path=cfg.video_file,
                                 num_frames=cfg.num_frames,
                                 batch_size=cfg.batch_size)

    # init writer
    writer = RecordWriter(filepath="data/test.tfrecord", level="frame")

    # extract features by inception_v3
    feats = None
    for step, frames in enumerate(data_loader):
        print("extracting feature [{}/{}]".format(step + 1, len(data_loader)))
Esempio n. 2
0
"""Main script for Youtube-8M feature extractor."""

import misc.config as cfg
from misc.utils import concat_feat, get_dataloader, make_cuda, make_variable
from models import PCAWrapper, inception_v3

if __name__ == '__main__':
    # init models and data loader
    model = make_cuda(
        inception_v3(pretrained=True, transform_input=True, extract_feat=True))
    pca = PCAWrapper(n_components=cfg.n_components)
    model.eval()

    # data loader for frames in ingle video
    # data_loader = get_dataloader(dataset="VideoFrame",
    #                              path=cfg.video_file,
    #                              num_frames=cfg.num_frames,
    #                              batch_size=cfg.batch_size)
    # data loader for frames decoded from several videos
    data_loader = get_dataloader(dataset="FrameImage",
                                 path=cfg.frame_root,
                                 batch_size=cfg.batch_size)

    # extract features by inception_v3
    feats = None
    for step, frames in enumerate(data_loader):
        print("extracting feature [{}/{}]".format(step + 1, len(data_loader)))
        feat = model(make_variable(frames))
        feats = concat_feat(feats, feat.data.cpu())

    # recude dimensions by PCA
Esempio n. 3
0
"""Train PCA for Youtube-8M feature extractor."""

import os

import torch

import init_path
import misc.config as cfg
from misc.utils import concat_feat_var
from models import PCAWrapper

if __name__ == '__main__':
    # init models and data loader
    pca = PCAWrapper(n_components=cfg.n_components,
                     batch_size=cfg.pca_batch_size)

    if os.path.exists(cfg.inception_v3_feats_path.format("total")):
        inception_v3_feats = torch.load(
            cfg.inception_v3_feats_path.format("total"))

    else:
        # get inception_v3 feats list
        feats_list = os.listdir(cfg.inception_v3_feats_root)
        feats_list = [
            v for v in feats_list
            if os.path.splitext(v)[1] in cfg.inception_v3_feats_ext
        ]

        # load inception_v3 feats
        inception_v3_feats = None
        for step, feat_file in enumerate(feats_list):