Esempio n. 1
0
def load_model(dataset_name, algo_name, dataset):
  if algo_name == "vbpr":
    model = VBPR(dataset.n_users, dataset.n_items, dataset.corpus.image_features)
  elif algo_name == "deepstyle":
    model = DeepStyle(
      dataset.n_users, dataset.n_items, dataset.n_categories, 
      dataset.corpus.image_features, dataset.corpus.item_category
    )

  model.load(f'../data/dataset/{dataset_name}/models/{algo_name}_resnet50.pth')

  return model
Esempio n. 2
0
from dataset import RecSysDataset
from train import Trainer
from models import VBPR
import torch

if __name__ == '__main__':
    k=10
    k2=20
    batch_size=128
    n_epochs=20
    dataset = RecSysDataset()
    vbpr = VBPR(
        dataset.n_users, dataset.n_items, 
        dataset.corpus.image_features, k, k2)
    tr = Trainer(vbpr, dataset)
    tr.train(n_epochs, batch_size)

    torch.save(vbpr, 'vbpr_resnet50_v1.pth')
Esempio n. 3
0
    parser.add_argument('--lambda_e', type=float, default=0.0001)
    parser.add_argument('--algorithm', type=str,
                        default='deepstyle')  # vbpr, deepstyle
    parser.add_argument('--dataset', type=str, default='Electronics')

    args = parser.parse_args()

    print(args)

    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    dataset = RecSysDataset(args.dataset)
    if args.algorithm == "vbpr":
        model = VBPR(dataset.n_users, dataset.n_items,
                     dataset.corpus.image_features, args.k, args.k2,
                     args.lambda_w, args.lambda_b, args.lambda_e)

    elif args.algorithm == "deepstyle":
        model = DeepStyle(dataset.n_users, dataset.n_items,
                          dataset.n_categories, dataset.corpus.image_features,
                          dataset.corpus.item_category, args.k, args.lambda_w,
                          args.lambda_e)

    elif args.algorithm == "bpr":
        model = BPR(dataset.n_users, dataset.n_items, args.k, args.lambda_w,
                    args.lambda_b)

    if torch.cuda.is_available():
        model = model.cuda()
Esempio n. 4
0
if __name__ == '__main__':
    parser = ArgumentParser(description="Experiments")

    parser.add_argument('--k', type=int, default=10)
    parser.add_argument('--k2', type=int, default=10)
    parser.add_argument('--algorithm', type=str,
                        default='deepstyle')  # bpr, vbpr, vbprc, deepstyle
    parser.add_argument('--dataset', type=str, default='Electronics')

    args = parser.parse_args()

    print(args)

    dataset = RecSysDataset(args.dataset)
    if args.algorithm == "vbpr":
        model = VBPR(dataset.n_users, dataset.n_items,
                     dataset.corpus.image_features, args.k, args.k2)

    elif args.algorithm == "vbprc":
        model = VBPRC(dataset.n_users, dataset.n_items, dataset.n_categories,
                      dataset.corpus.image_features,
                      dataset.corpus.item_category, args.k, args.k2)

    elif args.algorithm == "deepstyle":
        model = DeepStyle(dataset.n_users, dataset.n_items,
                          dataset.n_categories, dataset.corpus.image_features,
                          dataset.corpus.item_category, args.k)

    elif args.algorithm == "bpr":
        model = BPR(dataset.n_users, dataset.n_items, args.k)

    model.load(