def initialize_dask(): """Initialize Dask environment.""" from distributed.client import default_client try: client = default_client() except ValueError: from distributed import Client # The indentation here is intentional, we want the code to be indented. ErrorMessage.not_initialized( "Dask", """ from distributed import Client client = Client() """, ) num_cpus = CpuCount.get() memory_limit = Memory.get() worker_memory_limit = memory_limit // num_cpus if memory_limit else "auto" client = Client(n_workers=num_cpus, memory_limit=worker_memory_limit) num_cpus = len(client.ncores()) NPartitions._put(num_cpus)
def initialize_dask(): from distributed.client import get_client try: get_client() except ValueError: from distributed import Client # The indentation here is intentional, we want the code to be indented. ErrorMessage.not_initialized( "Dask", """ from distributed import Client client = Client() """, ) Client(n_workers=CpuCount.get())
def initialize_dask(): from distributed.client import get_client try: client = get_client() except ValueError: from distributed import Client # The indentation here is intentional, we want the code to be indented. ErrorMessage.not_initialized( "Dask", """ from distributed import Client client = Client() """, ) client = Client(n_workers=CpuCount.get()) num_cpus = len(client.ncores()) NPartitions.put_if_default(num_cpus)
def _update_engine(publisher: Parameter): global DEFAULT_NPARTITIONS, dask_client, num_cpus from modin.config import Backend, CpuCount if publisher.get() == "Ray": import ray from modin.engines.ray.utils import initialize_ray # With OmniSci backend there is only a single worker per node # and we allow it to work on all cores. if Backend.get() == "Omnisci": CpuCount.put(1) os.environ["OMP_NUM_THREADS"] = str(multiprocessing.cpu_count()) if _is_first_update.get("Ray", True): initialize_ray() num_cpus = ray.cluster_resources()["CPU"] elif publisher.get() == "Dask": # pragma: no cover from distributed.client import get_client if threading.current_thread( ).name == "MainThread" and _is_first_update.get("Dask", True): import warnings warnings.warn("The Dask Engine for Modin is experimental.") try: dask_client = get_client() except ValueError: from distributed import Client dask_client = Client(n_workers=CpuCount.get()) elif publisher.get() == "Cloudray": from modin.experimental.cloud import get_connection conn = get_connection() remote_ray = conn.modules["ray"] if _is_first_update.get("Cloudray", True): @conn.teleport def init_remote_ray(partition): from ray import ray_constants import modin from modin.engines.ray.utils import initialize_ray modin.set_backends("Ray", partition) initialize_ray( override_is_cluster=True, override_redis_address= f"localhost:{ray_constants.DEFAULT_PORT}", override_redis_password=ray_constants. REDIS_DEFAULT_PASSWORD, ) init_remote_ray(Backend.get()) # import EngineDispatcher here to initialize IO class # so it doesn't skew read_csv() timings later on import modin.data_management.factories.dispatcher # noqa: F401 else: get_connection().modules["modin"].set_backends( "Ray", Backend.get()) num_cpus = remote_ray.cluster_resources()["CPU"] elif publisher.get() == "Cloudpython": from modin.experimental.cloud import get_connection get_connection().modules["modin"].set_backends("Python") elif publisher.get() not in _NOINIT_ENGINES: raise ImportError("Unrecognized execution engine: {}.".format( publisher.get())) _is_first_update[publisher.get()] = False DEFAULT_NPARTITIONS = max(4, int(num_cpus))
def initialize_ray( override_is_cluster=False, override_redis_address: str = None, override_redis_password: str = None, ): """ Initialize Ray based on parameters, ``modin.config`` variables and internal defaults. Parameters ---------- override_is_cluster : bool, default: False Whether to override the detection of Modin being run in a cluster and always assume this runs on cluster head node. This also overrides Ray worker detection and always runs the initialization function (runs from main thread only by default). If not specified, ``modin.config.IsRayCluster`` variable is used. override_redis_address : str, optional What Redis address to connect to when running in Ray cluster. If not specified, ``modin.config.RayRedisAddress`` is used. override_redis_password : str, optional What password to use when connecting to Redis. If not specified, ``modin.config.RayRedisPassword`` is used. """ import ray if not ray.is_initialized() or override_is_cluster: cluster = override_is_cluster or IsRayCluster.get() redis_address = override_redis_address or RayRedisAddress.get() redis_password = override_redis_password or RayRedisPassword.get() if cluster: # We only start ray in a cluster setting for the head node. ray.init( address=redis_address or "auto", include_dashboard=False, ignore_reinit_error=True, _redis_password=redis_password, ) else: from modin.error_message import ErrorMessage # This string is intentionally formatted this way. We want it indented in # the warning message. ErrorMessage.not_initialized( "Ray", """ import ray ray.init() """, ) object_store_memory = Memory.get() # In case anything failed above, we can still improve the memory for Modin. if object_store_memory is None: virtual_memory = psutil.virtual_memory().total if sys.platform.startswith("linux"): shm_fd = os.open("/dev/shm", os.O_RDONLY) try: shm_stats = os.fstatvfs(shm_fd) system_memory = shm_stats.f_bsize * shm_stats.f_bavail if system_memory / (virtual_memory / 2) < 0.99: warnings.warn( f"The size of /dev/shm is too small ({system_memory} bytes). The required size " f"at least half of RAM ({virtual_memory // 2} bytes). Please, delete files in /dev/shm or " "increase size of /dev/shm with --shm-size in Docker. Also, you can set " "the required memory size for each Ray worker in bytes to MODIN_MEMORY environment variable." ) finally: os.close(shm_fd) else: system_memory = virtual_memory object_store_memory = int(0.6 * system_memory // 1e9 * 1e9) # If the memory pool is smaller than 2GB, just use the default in ray. if object_store_memory == 0: object_store_memory = None else: object_store_memory = int(object_store_memory) ray_init_kwargs = { "num_cpus": CpuCount.get(), "num_gpus": GpuCount.get(), "include_dashboard": False, "ignore_reinit_error": True, "object_store_memory": object_store_memory, "address": redis_address, "_redis_password": redis_password, "_memory": object_store_memory, } ray.init(**ray_init_kwargs) if Backend.get() == "Cudf": from modin.engines.ray.cudf_on_ray.frame.gpu_manager import GPUManager from modin.engines.ray.cudf_on_ray.frame.partition_manager import ( GPU_MANAGERS, ) # Check that GPU_MANAGERS is empty because _update_engine can be called multiple times if not GPU_MANAGERS: for i in range(GpuCount.get()): GPU_MANAGERS.append(GPUManager.remote(i)) _move_stdlib_ahead_of_site_packages() ray.worker.global_worker.run_function_on_all_workers( _move_stdlib_ahead_of_site_packages) ray.worker.global_worker.run_function_on_all_workers(_import_pandas) num_cpus = int(ray.cluster_resources()["CPU"]) num_gpus = int(ray.cluster_resources().get("GPU", 0)) if Backend.get() == "Cudf": NPartitions._put(num_gpus) else: NPartitions._put(num_cpus)
def initialize_ray( override_is_cluster=False, override_redis_address: str = None, override_redis_password: str = None, ): """ Initializes ray based on parameters, environment variables and internal defaults. Parameters ---------- override_is_cluster: bool, optional Whether to override the detection of Moding being run in a cluster and always assume this runs on cluster head node. This also overrides Ray worker detection and always runs the function, not only from main thread. If not specified, $MODIN_RAY_CLUSTER env variable is used. override_redis_address: str, optional What Redis address to connect to when running in Ray cluster. If not specified, $MODIN_REDIS_ADDRESS is used. override_redis_password: str, optional What password to use when connecting to Redis. If not specified, a new random one is generated. """ import ray if not ray.is_initialized() or override_is_cluster: import secrets cluster = override_is_cluster or IsRayCluster.get() redis_address = override_redis_address or RayRedisAddress.get() redis_password = override_redis_password or secrets.token_hex(32) if cluster: # We only start ray in a cluster setting for the head node. ray.init( address=redis_address or "auto", include_dashboard=False, ignore_reinit_error=True, _redis_password=redis_password, logging_level=100, ) else: from modin.error_message import ErrorMessage # This string is intentionally formatted this way. We want it indented in # the warning message. ErrorMessage.not_initialized( "Ray", """ import ray ray.init() """, ) object_store_memory = Memory.get() plasma_directory = RayPlasmaDir.get() if IsOutOfCore.get(): if plasma_directory is None: from tempfile import gettempdir plasma_directory = gettempdir() # We may have already set the memory from the environment variable, we don't # want to overwrite that value if we have. if object_store_memory is None: # Round down to the nearest Gigabyte. try: system_memory = ray._private.utils.get_system_memory() except AttributeError: # Compatibility with Ray <= 1.2 system_memory = ray.utils.get_system_memory() mem_bytes = system_memory // 10**9 * 10**9 # Default to 8x memory for out of core object_store_memory = 8 * mem_bytes # In case anything failed above, we can still improve the memory for Modin. if object_store_memory is None: # Round down to the nearest Gigabyte. try: system_memory = ray._private.utils.get_system_memory() except AttributeError: # Compatibility with Ray <= 1.2 system_memory = ray.utils.get_system_memory() object_store_memory = int(0.6 * system_memory // 10**9 * 10**9) # If the memory pool is smaller than 2GB, just use the default in ray. if object_store_memory == 0: object_store_memory = None else: object_store_memory = int(object_store_memory) ray_init_kwargs = { "num_cpus": CpuCount.get(), "include_dashboard": False, "ignore_reinit_error": True, "_plasma_directory": plasma_directory, "object_store_memory": object_store_memory, "address": redis_address, "_redis_password": redis_password, "logging_level": 100, "_memory": object_store_memory, "_lru_evict": True, } from packaging import version # setting of `_lru_evict` parameter raises DeprecationWarning since ray 2.0.0.dev0 if version.parse(ray.__version__) >= version.parse("2.0.0.dev0"): ray_init_kwargs.pop("_lru_evict") ray.init(**ray_init_kwargs) _move_stdlib_ahead_of_site_packages() ray.worker.global_worker.run_function_on_all_workers( _move_stdlib_ahead_of_site_packages) ray.worker.global_worker.run_function_on_all_workers(_import_pandas) num_cpus = int(ray.cluster_resources()["CPU"]) NPartitions._put(num_cpus)
def initialize_ray( override_is_cluster=False, override_redis_address: str = None, override_redis_password: str = None, ): """ Initializes ray based on parameters, environment variables and internal defaults. Parameters ---------- override_is_cluster: bool, optional Whether to override the detection of Moding being run in a cluster and always assume this runs on cluster head node. This also overrides Ray worker detection and always runs the function, not only from main thread. If not specified, $MODIN_RAY_CLUSTER env variable is used. override_redis_address: str, optional What Redis address to connect to when running in Ray cluster. If not specified, $MODIN_REDIS_ADDRESS is used. override_redis_password: str, optional What password to use when connecting to Redis. If not specified, a new random one is generated. """ import ray if threading.current_thread().name == "MainThread" or override_is_cluster: import secrets cluster = override_is_cluster or IsRayCluster.get() redis_address = override_redis_address or RayRedisAddress.get() redis_password = override_redis_password or secrets.token_hex(16) if cluster: # We only start ray in a cluster setting for the head node. ray.init( address=redis_address or "auto", include_dashboard=False, ignore_reinit_error=True, _redis_password=redis_password, logging_level=100, ) else: object_store_memory = Memory.get() plasma_directory = RayPlasmaDir.get() if IsOutOfCore.get(): if plasma_directory is None: from tempfile import gettempdir plasma_directory = gettempdir() # We may have already set the memory from the environment variable, we don't # want to overwrite that value if we have. if object_store_memory is None: # Round down to the nearest Gigabyte. mem_bytes = ray.utils.get_system_memory() // 10**9 * 10**9 # Default to 8x memory for out of core object_store_memory = 8 * mem_bytes # In case anything failed above, we can still improve the memory for Modin. if object_store_memory is None: # Round down to the nearest Gigabyte. object_store_memory = int( 0.6 * ray.utils.get_system_memory() // 10**9 * 10**9) # If the memory pool is smaller than 2GB, just use the default in ray. if object_store_memory == 0: object_store_memory = None else: object_store_memory = int(object_store_memory) ray.init( num_cpus=CpuCount.get(), include_dashboard=False, ignore_reinit_error=True, _plasma_directory=plasma_directory, object_store_memory=object_store_memory, address=redis_address, _redis_password=redis_password, logging_level=100, _memory=object_store_memory, _lru_evict=True, ) _move_stdlib_ahead_of_site_packages() ray.worker.global_worker.run_function_on_all_workers( _move_stdlib_ahead_of_site_packages) ray.worker.global_worker.run_function_on_all_workers(_import_pandas)
def _update_engine(publisher: Parameter): global dask_client from modin.config import Backend, CpuCount if publisher.get() == "Ray": if _is_first_update.get("Ray", True): from modin.engines.ray.utils import initialize_ray initialize_ray() elif publisher.get() == "Native": # With OmniSci backend there is only a single worker per node # and we allow it to work on all cores. if Backend.get() == "Omnisci": os.environ["OMP_NUM_THREADS"] = str(CpuCount.get()) else: raise ValueError( f"Backend should be 'Omnisci' with 'Native' engine, but provided {Backend.get()}." ) elif publisher.get() == "Dask": if _is_first_update.get("Dask", True): from modin.engines.dask.utils import initialize_dask initialize_dask() elif publisher.get() == "Cloudray": from modin.experimental.cloud import get_connection conn = get_connection() if _is_first_update.get("Cloudray", True): @conn.teleport def init_remote_ray(partition): from ray import ray_constants import modin from modin.engines.ray.utils import initialize_ray modin.set_backends("Ray", partition) initialize_ray( override_is_cluster=True, override_redis_address= f"localhost:{ray_constants.DEFAULT_PORT}", override_redis_password=ray_constants. REDIS_DEFAULT_PASSWORD, ) init_remote_ray(Backend.get()) # import FactoryDispatcher here to initialize IO class # so it doesn't skew read_csv() timings later on import modin.data_management.factories.dispatcher # noqa: F401 else: get_connection().modules["modin"].set_backends( "Ray", Backend.get()) elif publisher.get() == "Cloudpython": from modin.experimental.cloud import get_connection get_connection().modules["modin"].set_backends("Python") elif publisher.get() == "Cloudnative": from modin.experimental.cloud import get_connection assert ( Backend.get() == "Omnisci" ), f"Backend should be 'Omnisci' with 'Cloudnative' engine, but provided {Backend.get()}." get_connection().modules["modin"].set_backends("Native", "OmniSci") elif publisher.get() not in _NOINIT_ENGINES: raise ImportError("Unrecognized execution engine: {}.".format( publisher.get())) _is_first_update[publisher.get()] = False
# http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import modin.pandas as pd import numpy as np from modin.config import CpuCount, TestDatasetSize from .utils import generate_dataframe, RAND_LOW, RAND_HIGH, random_string # define `MODIN_CPUS` env var to control the number of partitions # it should be defined before modin.pandas import pd.DEFAULT_NPARTITIONS = CpuCount.get() if TestDatasetSize.get() == "Big": MERGE_DATA_SIZE = [ (5000, 5000, 5000, 5000), (10, 1_000_000, 10, 1_000_000), (1_000_000, 10, 1_000_000, 10), ] GROUPBY_DATA_SIZE = [ (5000, 5000), (10, 1_000_000), (1_000_000, 10), ] DATA_SIZE = [(50_000, 128)] else: MERGE_DATA_SIZE = [
def initialize_ray( override_is_cluster=False, override_redis_address: str = None, override_redis_password: str = None, ): """ Initialize Ray based on parameters, ``modin.config`` variables and internal defaults. Parameters ---------- override_is_cluster : bool, default: False Whether to override the detection of Modin being run in a cluster and always assume this runs on cluster head node. This also overrides Ray worker detection and always runs the initialization function (runs from main thread only by default). If not specified, ``modin.config.IsRayCluster`` variable is used. override_redis_address : str, optional What Redis address to connect to when running in Ray cluster. If not specified, ``modin.config.RayRedisAddress`` is used. override_redis_password : str, optional What password to use when connecting to Redis. If not specified, ``modin.config.RayRedisPassword`` is used. """ if not ray.is_initialized() or override_is_cluster: cluster = override_is_cluster or IsRayCluster.get() redis_address = override_redis_address or RayRedisAddress.get() redis_password = ( (ray.ray_constants.REDIS_DEFAULT_PASSWORD if cluster else RayRedisPassword.get()) if override_redis_password is None and RayRedisPassword.get_value_source() == ValueSource.DEFAULT else override_redis_password or RayRedisPassword.get()) if cluster: # We only start ray in a cluster setting for the head node. ray.init( address=redis_address or "auto", include_dashboard=False, ignore_reinit_error=True, _redis_password=redis_password, ) else: from modin.error_message import ErrorMessage # This string is intentionally formatted this way. We want it indented in # the warning message. ErrorMessage.not_initialized( "Ray", """ import ray ray.init() """, ) object_store_memory = Memory.get() # In case anything failed above, we can still improve the memory for Modin. if object_store_memory is None: virtual_memory = psutil.virtual_memory().total if sys.platform.startswith("linux"): shm_fd = os.open("/dev/shm", os.O_RDONLY) try: shm_stats = os.fstatvfs(shm_fd) system_memory = shm_stats.f_bsize * shm_stats.f_bavail if system_memory / (virtual_memory / 2) < 0.99: warnings.warn( f"The size of /dev/shm is too small ({system_memory} bytes). The required size " + f"at least half of RAM ({virtual_memory // 2} bytes). Please, delete files in /dev/shm or " + "increase size of /dev/shm with --shm-size in Docker. Also, you can set " + "the required memory size for each Ray worker in bytes to MODIN_MEMORY environment variable." ) finally: os.close(shm_fd) else: system_memory = virtual_memory object_store_memory = int(0.6 * system_memory // 1e9 * 1e9) # If the memory pool is smaller than 2GB, just use the default in ray. if object_store_memory == 0: object_store_memory = None else: object_store_memory = int(object_store_memory) mac_size_limit = getattr(ray.ray_constants, "MAC_DEGRADED_PERF_MMAP_SIZE_LIMIT", None) if (sys.platform == "darwin" and mac_size_limit is not None and object_store_memory > mac_size_limit): warnings.warn( "On Macs, Ray's performance is known to degrade with " + "object store size greater than " + f"{mac_size_limit / 2 ** 30:.4} GiB. Ray by default does " + "not allow setting an object store size greater than " + "that. Modin is overriding that default limit because " + "it would rather have a larger, slower object store " + "than spill to disk more often. To override Modin's " + "behavior, you can initialize Ray yourself.") os.environ["RAY_ENABLE_MAC_LARGE_OBJECT_STORE"] = "1" ray_init_kwargs = { "num_cpus": CpuCount.get(), "num_gpus": GpuCount.get(), "include_dashboard": False, "ignore_reinit_error": True, "object_store_memory": object_store_memory, "_redis_password": redis_password, "_memory": object_store_memory, } ray.init(**ray_init_kwargs) if StorageFormat.get() == "Cudf": from modin.core.execution.ray.implementations.cudf_on_ray.partitioning import ( GPUManager, GPU_MANAGERS, ) # Check that GPU_MANAGERS is empty because _update_engine can be called multiple times if not GPU_MANAGERS: for i in range(GpuCount.get()): GPU_MANAGERS.append(GPUManager.remote(i)) _move_stdlib_ahead_of_site_packages() ray.worker.global_worker.run_function_on_all_workers( _move_stdlib_ahead_of_site_packages) ray.worker.global_worker.run_function_on_all_workers(_import_pandas) num_cpus = int(ray.cluster_resources()["CPU"]) num_gpus = int(ray.cluster_resources().get("GPU", 0)) if StorageFormat.get() == "Cudf": NPartitions._put(num_gpus) else: NPartitions._put(num_cpus)