Esempio n. 1
0
def test_small_moddata_feature_selection_classif(small_moddata):
    """ This test creates classifier MODData and test the feature selection method """

    x1 = np.array([0] * 500 + [1] * 500 + [2] * 500, dtype='float')
    x2 = np.random.choice(2, 1500)
    x3 = x1 * x2
    x4 = x1 + (x2 * 0.5)
    targets = np.array(x1, dtype='int').reshape(-1, 1)
    features = np.array([x1, x2, x3, x4]).T
    names = ['my_classes']

    c_nmi = pd.DataFrame([[1, 0, 0.5, 0.5], [0, 1, 0.5, 0.5],
                          [0.5, 0.5, 1, 0.5], [0.5, 0.5, 0.5, 1]],
                         columns=['f1', 'f2', 'f3', 'f4'],
                         index=['f1', 'f2', 'f3', 'f4'])

    classif_md = MODData(['dummy'] * 1500,
                         targets,
                         target_names=names,
                         num_classes={"my_classes": 3})
    classif_md.df_featurized = pd.DataFrame(features,
                                            columns=['f1', 'f2', 'f3', 'f4'])
    classif_md.feature_selection(n=3, cross_nmi=c_nmi)
    assert len(classif_md.get_optimal_descriptors()) == 3
    assert classif_md.get_optimal_descriptors() == ['f1', 'f4', 'f3']
Esempio n. 2
0
    def fit(self,data:MODData, val_fraction = 0.0, val_key = None, lr=0.001, epochs = 200, batch_size = 128, xscale='minmax',yscale=None):
        
        print('new')
        self.xscale = xscale
        self.target_names = data.names
        self.optimal_descriptors = data.get_optimal_descriptors()
        x = data.get_featurized_df()[self.optimal_descriptors[:self.n_feat]].values
        print(x.shape)
        y = data.get_target_df()[self.targets_flatten].values.transpose()
        print(y.shape)
        
        #Scale the input features:
        if self.xscale == 'minmax':
            self.xmin = x.min(axis=0)
            self.xmax = x.max(axis=0)
            x=(x-self.xmin)/(self.xmax-self.xmin) - 0.5
                
        elif self.xscale == 'standard':
            self.scaler = StandardScaler()
            x = self.scaler.fit_transform(x)

        x = np.nan_to_num(x)
        
        if val_fraction > 0:
            if self.PP:
                print_callback = LambdaCallback(
                  on_epoch_end=lambda epoch,logs: print("epoch {}: loss: {:.3f}, val_loss:{:.3f} val_{}:{:.3f}".format(epoch,logs['loss'],logs['val_loss'],val_key,logs['val_{}_mae'.format(val_key)])))
            else:
                print_callback = LambdaCallback(
                  on_epoch_end=lambda epoch,logs: print("epoch {}: loss: {:.3f}, val_loss:{:.3f} val_{}:{:.3f}".format(epoch,logs['loss'],logs['val_loss'],val_key,logs['val_mae'])))
        else:
            print_callback = LambdaCallback(
              on_epoch_end=lambda epoch,logs: print("epoch {}: loss: {:.3f}".format(epoch,logs['loss']))) 

        
        fit_params = {
                      'x': x,
                      'y': list(y),
                      'epochs': epochs,
                      'batch_size': batch_size,
                      'verbose': 0,
                      'validation_split' : val_fraction,
                      'callbacks':[print_callback]
                  }
        print('compile',flush=True)
        self.model.compile(loss = 'mse',optimizer=keras.optimizers.Adam(lr=lr),metrics=['mae'],loss_weights=self.weights)
        print('fit',flush=True)     
        
        self.model.fit(**fit_params)
Esempio n. 3
0
    def fit_preset(
        self,
        data: MODData,
        presets: List[Dict[str, Any]] = None,
        val_fraction: float = 0.15,
        verbose: int = 0,
        classification: bool = False,
        refit: bool = True,
        fast: bool = False,
        nested: int = 5,
        callbacks: List[Any] = None,
        n_jobs=None,
    ) -> Tuple[List[List[Any]], np.ndarray, Optional[List[float]],
               List[List[float]], Dict[str, Any], ]:
        """Chooses an optimal hyper-parametered MODNet model from different presets.

        This function implements the "inner loop" of a cross-validation workflow. By
        modifying the `nested` argument, it can be run in full nested mode (i.e.
        train n_fold * n_preset models) or just with a simple random hold-out set.

        The data is first fitted on several well working MODNet presets
        with a validation set (10% of the furnished data by default).

        Sets the `self.model` attribute to the model with the lowest mean validation loss across
        all folds.

        Args:
            data: MODData object contain training and validation samples.
            presets: A list of dictionaries containing custom presets.
            verbose: The verbosity level to pass to tf.keras
            val_fraction: The fraction of the data to use for validation.
            classification: Whether or not we are performing classification.
            refit: Whether or not to refit the final model for each fold with
                the best-performing settings.
            fast: Used for debugging. If `True`, only fit the first 2 presets and
                reduce the number of epochs.
            nested: integer specifying whether or not to perform a full nested CV. If 0,
                a simple validation split is performed based on val_fraction argument.
                If an integer, use this number of inner CV folds, ignoring the `val_fraction` argument.
                Note: If set to 1, the value will be overwritten to a default of 5 folds.
            n_jobs: number of jobs for multiprocessing

        Returns:
            - A list of length num_outer_folds containing lists of MODNet models of length num_inner_folds.
            - A list of validation losses achieved by the best model for each fold during validation (excluding refit).
            - The learning curve of the final (refitted) model (or `None` if `refit` is `False`)
            - A nested list of learning curves for each trained model of lengths (num_outer_folds,  num_inner folds).
            - The settings of the best-performing preset.

        """

        from modnet.matbench.benchmark import matbench_kfold_splits

        if callbacks is None:
            es = tf.keras.callbacks.EarlyStopping(
                monitor="loss",
                min_delta=0.001,
                patience=100,
                verbose=verbose,
                mode="auto",
                baseline=None,
                restore_best_weights=False,
            )
            callbacks = [es]

        if presets is None:
            from modnet.model_presets import gen_presets

            presets = gen_presets(
                len(data.optimal_features),
                len(data.df_targets),
                classification=classification,
            )

        if fast and len(presets) >= 2:
            presets = presets[:2]
            for k, _ in enumerate(presets):
                presets[k]["epochs"] = 100

        num_nested_folds = 5
        if nested:
            num_nested_folds = nested
        if num_nested_folds <= 1:
            num_nested_folds = 5

        # create tasks
        splits = matbench_kfold_splits(data,
                                       n_splits=num_nested_folds,
                                       classification=classification)
        if not nested:
            splits = [
                train_test_split(range(len(data.df_featurized)),
                                 test_size=val_fraction)
            ]
            n_splits = 1
        else:
            n_splits = num_nested_folds
        train_val_datas = []
        for train, val in splits:
            train_val_datas.append(data.split((train, val)))

        tasks = []
        for i, params in enumerate(presets):
            n_feat = min(len(data.get_optimal_descriptors()), params["n_feat"])

            for ind in range(n_splits):
                val_params = {}
                train_data, val_data = train_val_datas[ind]
                val_params["val_data"] = val_data

                tasks += [{
                    "train_data": train_data,
                    "targets": self.targets,
                    "weights": self.weights,
                    "num_classes": self.num_classes,
                    "n_feat": n_feat,
                    "num_neurons": params["num_neurons"],
                    "lr": params["lr"],
                    "batch_size": params["batch_size"],
                    "epochs": params["epochs"],
                    "loss": params["loss"],
                    "act": params["act"],
                    "out_act": self.out_act,
                    "callbacks": callbacks,
                    "preset_id": i,
                    "fold_id": ind,
                    "verbose": verbose,
                    **val_params,
                }]

        val_losses = 1e20 * np.ones((len(presets), n_splits))
        learning_curves = [[None for _ in range(n_splits)]
                           for _ in range(len(presets))]
        models = [[None for _ in range(n_splits)] for _ in range(len(presets))]

        ctx = multiprocessing.get_context("spawn")
        pool = ctx.Pool(processes=n_jobs)
        LOG.info(
            f"Multiprocessing on {n_jobs} cores. Total of {multiprocessing.cpu_count()} cores available."
        )

        for res in tqdm.tqdm(
                pool.imap_unordered(map_validate_model, tasks, chunksize=1),
                total=len(tasks),
        ):
            val_loss, learning_curve, model, preset_id, fold_id = res
            LOG.info(f"Preset #{preset_id} fitting finished, loss: {val_loss}")
            # reload the model object after serialization
            model._restore_model()

            val_losses[preset_id, fold_id] = val_loss
            learning_curves[preset_id][fold_id] = learning_curve
            models[preset_id][fold_id] = model

        pool.close()
        pool.join()

        val_loss_per_preset = np.mean(val_losses, axis=1)
        best_preset_idx = int(np.argmin(val_loss_per_preset))
        best_model_idx = int(np.argmin(val_losses[best_preset_idx, :]))
        best_preset = presets[best_preset_idx]
        best_learning_curve = learning_curves[best_preset_idx][best_model_idx]
        best_model = models[best_preset_idx][best_model_idx]

        LOG.info(
            "Preset #{} resulted in lowest validation loss with params {}".
            format(best_preset_idx + 1,
                   tasks[n_splits * best_preset_idx + best_model_idx]))

        if refit:
            LOG.info("Refitting with all data and parameters: {}".format(
                best_preset))
            # Building final model

            n_feat = min(len(data.get_optimal_descriptors()),
                         best_preset["n_feat"])
            self.model = MODNetModel(
                self.targets,
                self.weights,
                num_neurons=best_preset["num_neurons"],
                n_feat=n_feat,
                act=best_preset["act"],
                out_act=self.out_act,
                num_classes=self.num_classes,
            ).model
            self.n_feat = n_feat
            self.fit(
                data,
                val_fraction=0,
                lr=best_preset["lr"],
                epochs=best_preset["epochs"],
                batch_size=best_preset["batch_size"],
                loss=best_preset["loss"],
                callbacks=callbacks,
                verbose=verbose,
            )
        else:
            self.n_feat = best_model.n_feat
            self.model = best_model.model
            self._scaler = best_model._scaler

        return models, val_losses, best_learning_curve, learning_curves, best_preset
Esempio n. 4
0
    def fit(
        self,
        training_data: MODData,
        val_fraction: float = 0.0,
        val_key: Optional[str] = None,
        val_data: Optional[MODData] = None,
        lr: float = 0.001,
        epochs: int = 200,
        batch_size: int = 128,
        xscale: Optional[str] = "minmax",
        metrics: List[str] = ["mae"],
        callbacks: List[Callable] = None,
        verbose: int = 0,
        loss: str = "mse",
        **fit_params,
    ) -> None:
        """Train the model on the passed training `MODData` object.

        Parameters:
            training_data: A `MODData` that has been featurized and
                feature selected. The first `self.n_feat` entries in
                `training_data.get_optimal_descriptors()` will be used
                for training.
            val_fraction: The fraction of the training data to use as a
                validation set for tracking model performance during
                training.
            val_key: The target name to track on the validation set
                during training, if performing multi-target learning.
            lr: The learning rate.
            epochs: The maximum number of epochs to train for.
            batch_size: The batch size to use for training.
            xscale: The feature scaler to use, either `None`,
                `'minmax'` or `'standard'`.
            metrics: A list of tf.keras metrics to pass to `compile(...)`.
            loss: The built-in tf.keras loss to pass to `compile(...)`.
            fit_params: Any additional parameters to pass to `fit(...)`,
                these will be overwritten by the explicit keyword
                arguments above.

        """

        if self.n_feat > len(training_data.get_optimal_descriptors()):
            raise RuntimeError(
                "The model requires more features than computed in data. "
                f"Please reduce n_feat below or equal to {len(training_data.get_optimal_descriptors())}"
            )

        self.xscale = xscale
        self.target_names = list(self.weights.keys())
        self.optimal_descriptors = training_data.get_optimal_descriptors()

        x = training_data.get_featurized_df()[
            self.optimal_descriptors[:self.n_feat]].values

        # For compatibility with MODNet 0.1.7; if there is only one target in the training data,
        # use that for the name of the target too.
        if (len(self.targets_flatten) == 1
                and len(training_data.df_targets.columns) == 1):
            self.targets_flatten = list(training_data.df_targets.columns)

        y = []
        for targ in self.targets_flatten:
            if self.num_classes[targ] >= 2:  # Classification
                y_inner = tf.keras.utils.to_categorical(
                    training_data.df_targets[targ].values,
                    num_classes=self.num_classes[targ],
                )
                loss = "categorical_crossentropy"
            else:
                y_inner = training_data.df_targets[targ].values.astype(
                    np.float, copy=False)
            y.append(y_inner)

        # Scale the input features:
        if self.xscale == "minmax":
            self._scaler = MinMaxScaler(feature_range=(-0.5, 0.5))

        elif self.xscale == "standard":
            self._scaler = StandardScaler()

        x = self._scaler.fit_transform(x)
        x = np.nan_to_num(x, nan=-1)

        if val_data is not None:
            val_x = val_data.get_featurized_df()[
                self.optimal_descriptors[:self.n_feat]].values
            val_x = self._scaler.transform(val_x)
            val_x = np.nan_to_num(val_x, nan=-1)
            try:
                val_y = list(val_data.get_target_df()[
                    self.targets_flatten].values.astype(
                        np.float, copy=False).transpose())
            except Exception:
                val_y = list(val_data.get_target_df().values.astype(
                    np.float, copy=False).transpose())
            validation_data = (val_x, val_y)
        else:
            validation_data = None

        # Optionally set up print callback
        if verbose:
            if val_fraction > 0 or validation_data:
                if self._multi_target and val_key is not None:
                    val_metric_key = f"val_{val_key}_mae"
                else:
                    val_metric_key = "val_mae"
                print_callback = tf.keras.callbacks.LambdaCallback(
                    on_epoch_end=lambda epoch, logs: print(
                        f"epoch {epoch}: loss: {logs['loss']:.3f}, "
                        f"val_loss:{logs['val_loss']:.3f} {val_metric_key}:{logs[val_metric_key]:.3f}"
                    ))

            else:
                print_callback = tf.keras.callbacks.LambdaCallback(
                    on_epoch_end=lambda epoch, logs: print(
                        f"epoch {epoch}: loss: {logs['loss']:.3f}"))

                if callbacks is None:
                    callbacks = [print_callback]
                else:
                    callbacks.append(print_callback)

        fit_params = {
            "x": x,
            "y": y,
            "epochs": epochs,
            "batch_size": batch_size,
            "verbose": verbose,
            "validation_split": val_fraction,
            "validation_data": validation_data,
            "callbacks": callbacks,
        }

        self.model.compile(
            loss=loss,
            optimizer=tf.keras.optimizers.Adam(lr=lr),
            metrics=metrics,
            loss_weights=self.weights,
        )
        history = self.model.fit(**fit_params)
        self.history = history.history
Esempio n. 5
0
    def fit_preset(
        self,
        data: MODData,
        presets: List[Dict[str, Any]] = None,
        val_fraction: float = 0.1,
        verbose: int = 0
    ) -> None:
        """Chooses an optimal hyper-parametered MODNet model from different presets.

        The data is first fitted on several well working MODNet presets
        with a validation set (10% of the furnished data by default).

        Sets the `self.model` attribute to the model with the lowest loss.

        Args:
            data: MODData object contain training and validation samples.
            presets: A list of dictionaries containing custom presets.
            verbose: The verbosity level to pass to Keras
            val_fraction: The fraction of the data to use for validation.

        """

        rlr = keras.callbacks.ReduceLROnPlateau(
            monitor="loss",
            factor=0.5,
            patience=20,
            verbose=verbose,
            mode="auto",
            min_delta=0,
        )
        es = keras.callbacks.EarlyStopping(
            monitor="loss",
            min_delta=0.001,
            patience=300,
            verbose=verbose,
            mode="auto",
            baseline=None,
            restore_best_weights=True,
        )
        callbacks = [rlr, es]

        if presets is None:
            from modnet.model_presets import MODNET_PRESETS
            presets = MODNET_PRESETS

        val_losses = 1e20 * np.ones((len(presets),))

        best_model = None
        best_n_feat = None

        for i, params in enumerate(presets):
            logging.info("Training preset #{}/{}".format(i + 1, len(presets)))
            n_feat = min(len(data.get_optimal_descriptors()), params["n_feat"])
            self.model = MODNetModel(
                self.targets,
                self.weights,
                num_neurons=params["num_neurons"],
                n_feat=n_feat,
                act=params["act"],
            ).model
            self.n_feat = n_feat
            self.fit(
                data,
                val_fraction=val_fraction,
                lr=params["lr"],
                epochs=params["epochs"],
                batch_size=params["batch_size"],
                loss=params["loss"],
                callbacks=callbacks,
                verbose=verbose,
            )
            val_loss = np.array(self.model.history.history["val_loss"])[-20:].mean()
            if val_loss < min(val_losses):
                best_model = self.model
                best_n_feat = n_feat

            val_losses[i] = val_loss

            logging.info("Validation loss: {:.3f}".format(val_loss))

        best_preset = val_losses.argmin()
        logging.info(
            "Preset #{} resulted in lowest validation loss.\nFitting all data...".format(
                best_preset + 1
            )
        )
        self.n_feat = best_n_feat
        self.model = best_model