def potentialEnergyplot():
    q0 = RCLPolymer(**polymerParams)
    dt = 0.01
    T = 120
    numSteps = int(T / dt)
    cutoffs = np.array([0.5, 1., 1.5, 2., 2.5, 3.]) * 0.2
    numRealisations = 100

    for cutoff in cutoffs:

        p0 = q0.copy()
        kappa = 3 * 0.008 / (p0.b**2)
        repulsionForce = lambda polymer: -kappa * ExcludedVolume(
            polymer, cutoff)
        p0.addnewForce(repulsionForce)

        energy = np.zeros((numRealisations, numSteps))
        for i in range(numRealisations):
            for j in range(numSteps):
                p0.step(1, dt, 0.008)
                energy[i][j] = p0.potentialEnergy()
        meanEnergy = np.mean(energy, axis=0)
        plt.plot(np.linspace(0, T, numSteps),
                 meanEnergy,
                 label='Cut-off: %s $\mu$m' % cutoff)

    plt.axvline(x=p0.relaxTime(0.008), color='r')
    plt.legend()
    plt.show()
def proba_v_gNc(polymerParams, simulationParams, x_g, x_Nc, errorbars=False):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_proba-v_gNc_withVE' + '.csv'

    first_time = True
    N = polymerParams['numMonomers']

    with open('results/' + filename, 'w') as csvfile:

        for i, g in enumerate(x_g):

            print("Simulation for g = %s " % g)
            simulationParams['genomicDistance'] = g

            for j, nc in enumerate(x_Nc):
                print("Simulation for Nc = %s " % nc)
                polymerParams['Nc'] = nc

                ### ADAPTIVE ENCOUNTER DISTANCE
                xi = 2 * (nc + simulationParams['Nc_inDamageFoci']) / (
                    (N - 1) * (N - 2))
                #                scaleFactor = np.sqrt( (1-xi0)*np.sqrt(xi0) / ((1-xi)*np.s1qrt(xi)) )
                simulationParams['encounterDistance'] = adaptiveEpsilon(
                    xi, N, polymerParams['b'])

                #                simulationParams['excludedVolumeCutOff'] = 3*simulationParams['encounterDistance']
                ### ADAPTIVE dt
                simulationParams['dt'] = np.round(
                    (0.2 * simulationParams['encounterDistance'])**2 /
                    (2 * simulationParams['diffusionConstant']),
                    decimals=4) - 0.0001

                simulationParams['numMaxSteps'] = int(60 //
                                                      simulationParams['dt'])

                print("ε = %s" % (simulationParams['encounterDistance']))

                p0 = RCLPolymer(**polymerParams)

                simulationParams['waitingSteps'] = np.ceil(
                    p0.relaxTime(simulationParams['diffusionConstant']) /
                    simulationParams['dt_relax']).astype(int)

                results = {**polymerParams, **simulationParams}
                mc = Experiment(p0, results, simulationParams,
                                "EncounterSimulation")

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + '_' + str(j)
                    },
                    **mc.results
                })
Esempio n. 3
0
def trackAlpha_vsNc(x_Nc):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_trackAlphaAfterDSB_vsNc'

    with open('results/' + filename + '.csv', 'w') as csvfile:

        first_time = True

        for i, Nc in enumerate(x_Nc):

            polymerParams['Nc'] = Nc
            p0 = RCLPolymer(**polymerParams)

            # Waiting time will be relaxation time (Nc dependant)
            simulationParams['waitingSteps'] = np.ceil(
                p0.relaxTime(simulationParams['diffusionConstant']) /
                simulationParams['dt_relax']).astype(int)
            simulationParams['VE_waitingSteps'] = np.ceil(
                p0.relaxTime(simulationParams['diffusionConstant']) /
                simulationParams['dt']).astype(int)

            results = {**polymerParams, **simulationParams}
            mc = Experiment(p0, results, simulationParams, trackAlpha)

            if first_time:
                fieldnames = ['experimentSetID'] + list(mc.results)
                writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                writer.writeheader()
                first_time = False
                os.makedirs('results/' + filename + '_figures')

            writer.writerow({**{'experimentSetID': str(i)}, **mc.results})

            # Save MSD raw data
            with open(
                    'results/' + filename + '_figures/nc' + str(Nc) +
                    'msd_data.csv', 'w') as rawdata:
                rowwriter = csv.writer(rawdata)
                for msd_data in mc.results['monomersMSD'].transpose():
                    rowwriter.writerow(msd_data)
            # Save MSD curve
            plt.figure()
            plt.plot(mc.results['monomersMSD'].transpose())
            legend = ['_o'] * polymerParams['numMonomers']
            legend[simulationParams['A1']] = 'a1'
            legend[simulationParams['A1'] + 1] = 'a2'
            legend[simulationParams['B1']] = 'b1'
            legend[simulationParams['B1'] + 1] = 'b2'
            legend = tuple(legend)
            plt.legend(legend)
            plt.savefig('results/' + filename + '_figures/nc' + str(Nc) +
                        '.png')
            plt.close()
Esempio n. 4
0
def proba_vs_encounterDistance(numRealisations):
    probas = []
    demiCI = []

    testDistances = np.arange(0.001, 0.004, 0.00025)
    date = strftime("%Y_%m_%d_%H_%M")

    plt.figure()
    plt.xlabel('Encounter distance ($\mu$ m)')
    plt.ylabel('$\mathbb{P}$(Repair)')

    for epsilon in testDistances:
        p0 = RCLPolymer(nb_monomers, dimension, b, numConectors)
        mc = EncounterSimulation(dt, diffusionCte, p0, dt_relax,
                                 numRealisations, maxIterationsPerExperiment,
                                 2, genomicDistance, epsilon, waitingSteps)
        mc.run()
        probas.append(mc.repairProba[0])
        demiCI.append(mc.repairProba[1])

    probas = np.array(probas)

    output = np.zeros((3, len(probas)))
    output[0] = testDistances
    output[1] = probas
    output[2] = demiCI

    np.save(
        'results/proba_vs_encounterDistance__' + str(nb_monomers) +
        'monomers_' + str(numRealisations) + 'iterations_' + date + '.npy',
        output)

    plt.plot(testDistances, probas, '-o')
    plt.show()
def trackDefinedDSBtrajectory(polymerParams, simulationParams, x_Nc):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_trackDSB_fixedDSBs' + '.csv'

    first_time = True
    with open('results/' + filename, 'w') as csvfile:

        for i, Nc in enumerate(x_Nc):

            print("\n Simulation for Nc = %s CLs " % Nc)
            polymerParams['Nc'] = Nc

            #            ### ADAPTIVE ENCOUNTER DISTANCE
            #            xi = 2*(Nc)/((N-1)*(N-2))
            ##                scaleFactor = np.sqrt( (1-xi0)*np.sqrt(xi0) / ((1-xi)*np.s1qrt(xi)) )
            #            simulationParams['encounterDistance'] = adaptiveEpsilon(xi, N, polymerParams['b'])
            #
            #            simulationParams['distanceThreshold'] = simulationParams['encounterDistance']

            p0 = RCLPolymer(**polymerParams)

            results = {**polymerParams, **simulationParams}

            mc = Experiment(p0, results, simulationParams, "trackDSB")

            if first_time:
                fieldnames = ['experimentSetID'] + list(mc.results)
                writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                writer.writeheader()
                first_time = False
            writer.writerow({**{'experimentSetID': str(i)}, **mc.results})
Esempio n. 6
0
def proba_v_sigma(polymerParams, simulationParams, x_sigma):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_msrg-v_sigma' + '.csv'

    first_time = True

    with open('results/' + filename, 'w') as csvfile:

        for i, keepCL in enumerate([True]):

            polymerParams['keepCL'] = keepCL

            for j, sigma in enumerate(x_sigma):
                print("Simulation for σ = %s " % sigma)
                simulationParams['excludedVolumeCutOff'] = sigma

                p0 = RCLPolymer(**polymerParams)
                results = {**polymerParams, **simulationParams}
                if sigma == 0:
                    expName = "measureMSRG"
                else:
                    expName = "measureMSRG"
                mc = Experiment(p0, results, simulationParams, expName)

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + '_' + str(j)
                    },
                    **mc.results
                })
def FET_Simulation(polymerParams, simulationParams):

    #    date = strftime("%Y_%m_%d_%H_%M")
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '__FETSimulationResults' + '.csv'

    p0 = RCLPolymer(**polymerParams)
    results = {**polymerParams, **simulationParams}
    mc = Experiment(p0, results, simulationParams, "EncounterSimulation")

    ### SAVE RESULTS
    with open('results/' + filename, 'w') as csvfile:
        fieldnames = list(mc.results)
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writeheader()
        writer.writerow({**mc.results})

    ### PLOT RESULTS
    plotFET(mc)

    halfCI = 1.96 * np.nanstd(mc.results['FETs']) / np.sqrt(
        simulationParams['numRealisations'])
    print('Mean FTE : ' + str(np.nanmean(mc.results['FETs'])) + ' ± ' +
          str(halfCI))

    events = mc.results['eventsCounter']
    plot_bar_from_counter(events)
    plt.show()

    #    filepath = 'results/FET_Distribution_Experiment_'+date+'.pkl'

    #    with open(filepath, 'wb') as output:
    #        pickle.dump(mc, output, pickle.HIGHEST_PROTOCOL)

    return mc
def FET_Simulation(polymerParams, simulationParams):

    date = strftime("%Y_%m_%d_%H_%M")

    p0 = RCLPolymer(**polymerParams)
    results = {}
    mc = Experiment(p0, results, simulationParams,
                    "Encounter_withExcludedVolume")

    plotFET(mc)

    halfCI = 1.96 * np.std(mc.results['FETs']) / np.sqrt(
        simulationParams['numRealisations'])
    print('Mean FTE : ' + str(np.mean(mc.results['FETs'])) + ' ± ' +
          str(halfCI))

    events = mc.results['eventsCounter']
    plot_bar_from_counter(events)
    plt.show()

    filepath = 'results/FET_Distribution_Experiment_' + date + '.pkl'

    with open(filepath, 'wb') as output:
        pickle.dump(mc, output, pickle.HIGHEST_PROTOCOL)

    return mc
Esempio n. 9
0
def FET_Simulation(encounterDistance, waitingSteps, numRealisations, keepCL):

    date = strftime("%Y_%m_%d_%H_%M")

    p0 = RCLPolymer(nb_monomers, dimension, b, numConectors, keepCL)

    mc = EncounterSimulation(dt, diffusionCte, p0, dt_relax, numRealisations,
                             maxIterationsPerExperiment, 2, genomicDistance,
                             encounterDistance, waitingSteps)
    mc.run()

    plotFET(mc)

    halfCI = 1.96 * np.std(mc.FETs) / np.sqrt(numRealisations)
    print('Mean FTE : ' + str(np.mean(mc.FETs)) + ' ± ' + str(halfCI))

    #
    events = mc.events
    plot_bar_from_counter(events)
    plt.show()

    filepath = 'results/FET_Distribution__'+'keepCL_'+str(keepCL)+\
    str(nb_monomers)+'monomers_'+str(numRealisations)+'iterations'+\
    date+'.pkl'

    with open(filepath, 'wb') as output:
        pickle.dump(mc, output, pickle.HIGHEST_PROTOCOL)
Esempio n. 10
0
def proba_vs_genomicDistance(nb_monomers,
                             gmax,
                             gStep,
                             test_epsilons,
                             numRealisations,
                             errorbars=False):
    #    gmax = nb_monomers - 3
    gmin = 2

    probas = []
    demiCI = []

    plt.figure()
    plt.xlabel('genomic distance (in number of monomers)')
    plt.ylabel(r'$\mathbb{P}$(Repair)')

    xg = np.arange(gmin, gmax, gStep, dtype=int)

    date = strftime("%Y_%m_%d_%H_%M")

    output = np.empty((len(test_epsilons), 3, len(xg)))
    for i, eps in enumerate(test_epsilons):

        probas = []
        demiCI = []
        for g in xg:
            p0 = RCLPolymer(nb_monomers, dimension, b, numConectors)
            mc = EncounterSimulation(dt, diffusionCte, p0, dt_relax,
                                     numRealisations,
                                     maxIterationsPerExperiment, 2, g, eps,
                                     waitingSteps)
            mc.run()
            probas.append(mc.repairProba[0])
            demiCI.append(mc.repairProba[1])

        probas = np.array(probas)
        demiCI = np.array(demiCI)

        output[i][0] = xg
        output[i][1] = probas
        output[i][2] = demiCI

        if errorbars:
            plt.errorbar(x=xg,
                         y=probas,
                         yerr=demiCI,
                         fmt='-o',
                         label=r'$\varepsilon = $ ' + str(eps),
                         capsize=4)
        else:
            plt.plot(xg, probas, '-o', label=r'$\varepsilon = $ ' + str(eps))

    np.save(
        'results/proba_vs_genomicDistance__' + str(nb_monomers) + 'monomers_' +
        str(numRealisations) + 'iterations_' + date + '.npy', output)

    plt.legend()
    plt.show()
def proba_vs_conectorsNumber(test_genomic_distances,
                             x_Nc,
                             keepCL,
                             errorbars=False):
    probas = []
    demiCI = []

    output = np.zeros((len(test_genomic_distances), 3, len(x_Nc)))

    date = strftime("%Y_%m_%d_%H_%M")

    plt.figure()

    for i, genomicDistance in enumerate(test_genomic_distances):
        probas = []
        demiCI = []

        for Nc in x_Nc:
            results = {}
            p0 = RCLPolymer(100, 3, 0.2, Nc, keepCL)
            params['genomicDistance'] = genomicDistance
            mc = Experiment(p0, results, params, "EncounterSimulation")
            probas.append(mc.results['repair_probability_CI'][0])
            demiCI.append(mc.results['repair_probability_CI'][1])

        probas = np.array(probas)
        demiCI = np.array(demiCI)

        output[i][0] = x_Nc
        output[i][1] = probas
        output[i][2] = demiCI

        np.save(
            'results/proba_vs_conectorsNumber__' + 'keepCL_' + str(keepCL) +
            str(100) + 'monomers_' + str(numRealisations) + 'iterations' +
            date + '.npy', output)

        if errorbars:
            plt.errorbar(x=x_Nc,
                         y=probas,
                         yerr=demiCI,
                         fmt='-o',
                         label=r'$g = $ ' + str(genomicDistance),
                         capsize=4)
        else:
            plt.plot(x_Nc,
                     probas,
                     '-o',
                     label=r'$g = $ ' + str(genomicDistance))

    np.save(
        'results/proba_vs_conectorsNumber__' + 'keepCL_' + str(keepCL) +
        str(100) + 'monomers_' + str(numRealisations) + 'iterations' + date +
        '.npy', output)

    plt.legend()
    plt.show()
Esempio n. 12
0
def proba_v_NlrandSizes(polymerParams, simulationParams, x_Nlr, x_TADsizes):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_proba-v_Nlr_TADsize' + '.csv'

    first_time = True

    with open('results/' + filename, 'w') as csvfile:

        for i, nlr in enumerate(x_Nlr):

            print("Simulation for Nlr = %s " % nlr)
            polymerParams['Nc'][0, 1] = polymerParams['Nc'][1, 0] = nlr

            for j, tadsize in enumerate(x_TADsizes):
                print("Simulation for a parasyte of size %s " % tadsize)
                polymerParams['numMonomers'][1] = tadsize

                N = polymerParams['numMonomers'].sum()
                ### ADAPTIVE ENCOUNTER DISTANCE
                xi = 2 * (polymerParams['Nc'].sum()) / ((N - 1) * (N - 2))
                #                scaleFactor = np.sqrt( (1-xi0)*np.sqrt(xi0) / ((1-xi)*np.s1qrt(xi)) )
                simulationParams['encounterDistance'] = adaptiveEpsilon(
                    xi, N, polymerParams['b'])

                ### ADAPTIVE dt
                simulationParams['dt'] = np.round(
                    (0.2 * simulationParams['encounterDistance'])**2 /
                    (2 * simulationParams['diffusionConstant']),
                    decimals=4) - 0.0001

                print("ε = %s" % (simulationParams['encounterDistance']))

                p0 = RCLPolymer(**polymerParams)
                results = {
                    **polymerParams,
                    **simulationParams,
                    **{
                        'Nlr': polymerParams['Nc'][0, 1],
                        'TADsize': polymerParams['numMonomers'][1]
                    }
                }

                mc = Experiment(p0, results, simulationParams, "oneTAD_Repair")

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + '_' + str(j)
                    },
                    **mc.results
                })
Esempio n. 13
0
def DSBclustering(polymerParams, simulationParams):
    """ 
    Tracks the breaks positions assuming they are persistent 
    """

    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_interbreakdistances' + '.csv'

    with open('results/' + filename, 'w') as csvfile:

        plt.figure()
        rcParams.update({'axes.labelsize': 'xx-large'})
        rcParams.update({'legend.fontsize': 'large'})
        plt.xlabel('Time (sec)')
        plt.ylabel('Distance between A1 and A2')  #(r'$\mathbb{P}$(Repair)')

        first_time = True
        for i, VolumeExclusion in enumerate([False]):

            if VolumeExclusion:
                labelkeep = 'Excluding volume with a cutoff of ' + str(
                    simulationParams['excludedVolumeCutOff']) + ' μm'
            else:
                labelkeep = 'Without excluded volume'
                simulationParams['excludedVolumeCutOff'] = 0

            p0 = RCLPolymer(**polymerParams)
            results = {**polymerParams, **simulationParams}
            mc = Experiment(p0, results, simulationParams, 'persistentDSB')

            if first_time:
                fieldnames = ['experimentSetID'] + list(mc.results)
                writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                writer.writeheader()
                first_time = False
            writer.writerow({**{'experimentSetID': str(i)}, **mc.results})

            plt.title(labelkeep)
            time = np.arange(simulationParams['numSteps'] +
                             1) * simulationParams['dt']

            from itertools import combinations
            z = combinations([
                chr(97 + i // 2) + str(1 + i % 2)
                for i in range(2 * len(p0.subDomainnumMonomers))
            ],
                             r=2)
            names = [i for i in z]

            for i in range(15):
                distanceA2B1 = mc.results['MeanInterBreakDistance'][:, i]
                plt.plot(time, distanceA2B1, '-', label='d(%s, %s)' % names[i])

        plt.legend()
        plt.show()
def proba_v_sigma(polymerParams, simulationParams, x_sigma, errorbars=False):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_proba-v_sigma' + '.csv'

    #    plt.figure()
    #    rcParams.update({'axes.labelsize' : 'xx-large'})
    #    rcParams.update({'legend.fontsize': 'xx-large'})
    #    rcParams.update({'xtick.labelsize': 'xx-large'})
    #    rcParams.update({'ytick.labelsize': 'xx-large'})
    #    plt.xlabel('Number of connectors in DF')
    #    plt.ylabel('Mean FET (sec)') #('Mean first encounter time (sec)') #

    first_time = True

    with open('results/' + filename, 'w') as csvfile:

        for i, keepCL in enumerate([True]):

            #            if keepCL:
            #                labelkeep = "Keeping CLs in DF"
            #
            #            else:
            #                labelkeep = 'Removing CLs in DF'
            polymerParams['keepCL'] = keepCL
            #            mfet = np.zeros(len(x_Nc))
            #            efet = np.zeros(len(x_Nc))
            #            p = np.zeros(len(x_sigma))
            #            dp = np.zeros(len(x_sigma))
            for j, sigma in enumerate(x_sigma):
                print("Simulation for σ = %s " % sigma)
                simulationParams['excludedVolumeCutOff'] = sigma

                p0 = RCLPolymer(**polymerParams)
                results = {**polymerParams, **simulationParams}
                if sigma == 0:
                    expName = "EncounterSimulation"
                else:
                    expName = "Encounter_withRepairSphere"
                mc = Experiment(p0, results, simulationParams, expName)

                #                p[j] = mc.results['repair_probability']
                #                dp[j] = mc.results['repair_CIhalflength']

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + '_' + str(j)
                    },
                    **mc.results
                })
Esempio n. 15
0
def proba_vs_genomicDistance_andVE(polymerParams,
                                   simulationParams,
                                   x_sigma,
                                   gmax,
                                   gStep,
                                   errorbars=False):

    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_VE_proba_vs_genomicDistance_' + '.csv'

    with open('results/' + filename, 'w') as csvfile:

        gmin = 2

        #        plt.figure()
        #        rcParams.update({'axes.labelsize': 'xx-large'})
        #        plt.xlabel('genomic distance (in number of monomers)')
        #        plt.ylabel(r'$\mathbb{P}$(Repair)')

        xg = np.arange(gmin, gmax, gStep, dtype=int)

        for i, sigma in enumerate(x_sigma):

            if sigma == 0:
                labelkeep = 'Without excluded volume'
                experimentName = "EncounterSimulation"
                simulationParams['excludedVolumeCutOff'] = 0
            else:
                labelkeep = r"Excluding volume ($\sigma = %s $)" % sigma
                experimentName = "Encounter_withRepairSphere"
                simulationParams['excludedVolumeCutOff'] = sigma
            probas = np.zeros(len(xg))
            demiCI = np.zeros(len(xg))
            for j, g in enumerate(xg):
                print("Simulation for g =", g, "and ", labelkeep)
                p0 = RCLPolymer(**polymerParams)
                simulationParams['genomicDistance'] = g
                results = {**polymerParams, **simulationParams}
                mc = Experiment(p0, results, simulationParams, experimentName)
                #            oneTAD_Repair
                probas[j] = mc.results['repair_probability']
                demiCI[j] = mc.results['repair_CIhalflength']

                if i == 0 and g == gmin:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + '_' + str(j)
                    },
                    **mc.results
                })
Esempio n. 16
0
def stats_vs_Nb(polymerParams, simulationParams, x_Nb, x_g):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_StatsVsNb' + '.csv'

    first_time = True

    with open('results/' + filename, 'w') as csvfile:

        for i, Nb in enumerate(x_Nb):

            print("Simulation for Nb = %s breaks " % Nb)
            simulationParams['Nb'] = Nb

            for j, g in enumerate(x_g):

                simulationParams['genomicDistance'] = g
                print("and g = %s . " % g)

                p0 = RCLPolymer(**polymerParams)

                simulationParams['waitingSteps'] = np.ceil(
                    p0.relaxTime(simulationParams['diffusionConstant']) /
                    simulationParams['dt_relax']).astype(int)

                results = {**polymerParams, **simulationParams}

                mc = Experiment(p0, results, simulationParams,
                                "EncounterSimulation")

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + "_" + str(j)
                    },
                    **mc.results
                })
Esempio n. 17
0
def proba_v_interDomainDistance(polymerParams, simulationParams, TAD_size,
                                test_distances, errorbars):
    """
    Probability vs interDomainDistance
    """

    plt.figure()
    rcParams.update({'axes.labelsize': 'xx-large'})
    plt.xlabel('genomic distance between TADs')
    plt.ylabel(r'$\mathbb{P}$(Repair)')

    xg = test_distances

    date = strftime("%Y_%m_%d_%H_%M")

    output = np.empty((3, len(xg)))

    probas = []
    demiCI = []

    for g in xg:
        print("Simulation for 2 TADs of size %s, at a distance % s" %
              (TAD_size, g))
        tad1_right = 50 - np.ceil(g / 2).astype(int)
        tad2_left = 50 + np.floor(g / 2).astype(int)
        polymerParams['TADs'] = [(tad1_right - TAD_size, tad1_right),
                                 (tad2_left, tad2_left + TAD_size)]
        p0 = RCLPolymer(**polymerParams)
        results = {}
        mc = Experiment(p0, results, simulationParams, "TAD_Repair")

        probas.append(mc.results['repair_probability_CI'][0])
        demiCI.append(mc.results['repair_probability_CI'][1])

    probas = np.array(probas)
    demiCI = np.array(demiCI)

    output[0] = xg
    output[1] = probas
    output[2] = demiCI

    if errorbars:
        plt.errorbar(x=xg, y=probas, yerr=demiCI, fmt='-o', capsize=4)
    else:
        plt.plot(xg, probas, '-o')

    np.save('results/proba_vs_interTADdistance__' + date + '.npy', output)

    plt.legend()
    plt.show()

    return mc
def measureProba(g):
    probas = np.zeros(len(x_Nc))
    halfCI = np.zeros(len(x_Nc))
    params['genomicDistance'] = g

    for i, Nc in enumerate(x_Nc):
        results = {}
        np.random.seed()
        p0 = RCLPolymer(100, 3, 0.2, Nc, False)
        mc = Experiment(p0, results, params, "EncounterSimulation")
        probas[i] = mc.results['repair_probability']
        halfCI[i] = mc.results['repair_CIhalflength']
    return (probas, halfCI)
def trackAlpha_v_gNc(polymerParams, simulationParams, x_g, x_Nc):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_trackMSD' + '.csv'

    first_time = True
    N = polymerParams['numMonomers']

    with open('results/' + filename, 'w') as csvfile:

        for i, g in enumerate(x_g):

            print("Simulation for g = %s " % g)
            simulationParams['genomicDistance'] = g

            for j, nc in enumerate(x_Nc):
                print("Simulation for Nc = %s " % nc)
                polymerParams['Nc'] = nc

                p0 = RCLPolymer(**polymerParams)

                simulationParams['waitingSteps'] = np.ceil(
                    p0.relaxTime(simulationParams['diffusionConstant']) /
                    simulationParams['dt_relax']).astype(int)

                results = {**polymerParams, **simulationParams}
                mc = Experiment(p0, results, simulationParams, "trackMSD")

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + '_' + str(j)
                    },
                    **mc.results
                })
Esempio n. 20
0
def makeExperiment(numrealisations):
    p0 = RCLPolymer(100, 3, 0.2, 3)
    params = dict(
        dt_relax=0.5,
        diffusionConstant=0.008,
        #              numSteps = 100,
        dt=0.1,
        genomicDistance=2,
        Nb=2,
        waitingSteps=200,
        numMaxSteps=600,
        encounterDistance=0.1)
    results = {}
    params['numRealisations'] = numrealisations
    np.random.seed()
    return Experiment(p0, results, params, "EncounterSimulation")
def proba_vs_ExclusioncutoffRadius(polymerParams,
                                   simulationParams,
                                   test_cutoffs,
                                   errorbars=False):

    Allresults = []

    probas = []
    demiCI = []

    date = strftime("%Y_%m_%d_%H_%M")

    plt.figure()
    plt.xlabel('Cutoff radius (micron)')
    plt.ylabel(r'$\mathbb{P}$(Correct repair)')

    for threshold in test_cutoffs:

        print('Simulation for a cutoff of', threshold)

        p0 = RCLPolymer(**polymerParams)
        simulationParams['excludedVolumeCutOff'] = threshold
        results = {}
        mc = Experiment(p0, results, simulationParams,
                        "Encounter_withExcludedVolume")

        Allresults.append(mc.results)

        probas.append(mc.results['repair_probability_CI'][0])
        demiCI.append(mc.results['repair_probability_CI'][1])

    if errorbars:
        plt.errorbar(x=test_cutoffs,
                     y=probas,
                     yerr=demiCI,
                     fmt='-o',
                     capsize=4)
    else:
        plt.plot(test_cutoffs, probas, '-o')

    filepath = 'results/Proba_vs_cutoffs__' + date + '.pkl'

    saveasPickle(filepath, Allresults)

    #    plt.legend()
    plt.show()
Esempio n. 22
0
def DSBclustering(polymerParams, simulationParams):
    """This experiment"""
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_interbreakdistances' + '.csv'

    with open('results/' + filename, 'w') as csvfile:

        plt.figure()
        rcParams.update({'axes.labelsize': 'xx-large'})
        rcParams.update({'legend.fontsize': 'large'})
        plt.xlabel('Time (sec)')
        plt.ylabel('Distance between A1 and A2')  #(r'$\mathbb{P}$(Repair)')

        first_time = True
        for i, VolumeExclusion in enumerate([True, False]):

            if VolumeExclusion:
                labelkeep = 'Excluding volume with a cutoff of ' + str(
                    simulationParams['excludedVolumeCutOff']) + ' μm'
            else:
                labelkeep = 'Without excluded volume'
                simulationParams['excludedVolumeCutOff'] = 0

            p0 = RCLPolymer(**polymerParams)
            results = {**polymerParams, **simulationParams}
            mc = Experiment(p0, results, simulationParams, 'persistentDSB')

            if first_time:
                fieldnames = ['experimentSetID'] + list(mc.results)
                writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                writer.writeheader()
                first_time = False
            writer.writerow({**{'experimentSetID': str(i)}, **mc.results})

            distanceA2B1 = mc.results['MeanInterBreakDistance'][:, 0]

            time = np.arange(simulationParams['numSteps'] +
                             1) * simulationParams['dt']
            plt.plot(time, distanceA2B1, '-', label=labelkeep)

        plt.legend()
        plt.show()
Esempio n. 23
0
def proba_vs_DSBNumber(numRealisations=500, nb_monomers=50, genomicDistance=4):
    probas = []
    demiCI = []
    NbMax = 1 + int((nb_monomers - 1) / (genomicDistance + 1))
    for Nb in range(1, NbMax):
        p0 = RCLPolymer(nb_monomers, dimension, b, numConectors)
        mc = EncounterSimulation(dt, diffusionCte, p0, dt_relax,
                                 numRealisations, maxIterationsPerExperiment,
                                 Nb, genomicDistance, encounterDistance,
                                 waitingSteps)
        mc.run()
        probas.append(mc.repairProba[0])
        demiCI.append(mc.repairProba[1])

    probas = np.array(probas)

    plt.figure()
    plt.plot(np.arange(1, NbMax), probas)
    plt.plot(np.arange(1, NbMax), probas - demiCI, 'r--', lw=0.4)
    plt.plot(np.arange(1, NbMax), probas + demiCI, 'r--', lw=0.4)
    plt.show()
def trackDistanceDistribution(polymerParams, simulationParams, x_Nc, x_g):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_trackDSB' + '.csv'

    first_time = True

    with open('results/' + filename, 'w') as csvfile:

        for i, Nc in enumerate(x_Nc):

            print("Simulation for Nc = %s CLs " % Nc)
            polymerParams['Nc'] = Nc

            for j, g in enumerate(x_g):

                simulationParams['genomicDistance'] = g
                print("and g = %s . " % g)

                p0 = RCLPolymer(**polymerParams)

                #                simulationParams['waitingSteps'] = np.ceil(p0.relaxTime(simulationParams['diffusionConstant'])/simulationParams['dt_relax']).astype(int)

                results = {**polymerParams, **simulationParams}

                mc = Experiment(p0, results, simulationParams, "trackDSB")

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + "_" + str(j)
                    },
                    **mc.results
                })
def proba_v_VEkappa(polymerParams,
                    simulationParams,
                    x_sigma,
                    x_kappa,
                    errorbars=False):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_proba-v_kappa' + '.csv'

    first_time = True

    with open('results/' + filename, 'w') as csvfile:

        for i, sigma in enumerate(x_sigma):

            print("Simulation for σ = %s " % sigma)
            simulationParams['excludedVolumeCutOff'] = sigma

            for j, kappa in enumerate(x_kappa):
                print("Simulation for κ = %s " % kappa)
                simulationParams['excludedVolumeSpringConstant'] = kappa

                p0 = RCLPolymer(**polymerParams)
                results = {**polymerParams, **simulationParams}
                mc = Experiment(p0, results, simulationParams,
                                "Encounter_withRepairSphere")

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + '_' + str(j)
                    },
                    **mc.results
                })
def watchOneSimulation(polymerParams, simulationParams):
    p0 = RCLPolymer(**polymerParams)
    results = {}
    mc = Experiment(p0, results, simulationParams, "watchEncounter")
    print(mc.results['FET'])
    return mc
if __name__ == "__main__":

    ##    trackDistanceDistribution(polymerParams, simulationParams, x_Nc, x_g)
    #
    #    x_Nc = np.arange(5,90,5)
    #    x_g = [5,40]
    #    trackDistanceDistribution(polymerParams, simulationParams, x_Nc, x_g)

    #    x_Nc = np.arange(20,60,5)
    simulationParams['A1'] = 30
    simulationParams['B1'] = 59
    #    trackDefinedDSBtrajectory(polymerParams, simulationParams, x_Nc)
    #

    p0 = RCLPolymer(**polymerParams)

    #    simulationParams['waitingSteps'] = np.ceil(p0.relaxTime(simulationParams['diffusionConstant'])/simulationParams['dt_relax']).astype(int)

    results = {**polymerParams, **simulationParams}

    mc = Experiment(p0, results, simulationParams, "trackDSB")

    above = mc.results['aboveTimes']
    below = mc.results['belowTimes']

    plt.figure()
    plt.hist(below['a1-a2'])

    aboveTimes = {
        'a1-a2':
from modules.Polymers import RCLPolymer

nb_monomers = 50

numRealisations = 200
numConectors = 0  #number of added connectors

numSteps = 100
dt = 0.005
dt_relax = 0.05

dimension = 3
diffusionCte = 0.008
b = 0.2

p0 = RCLPolymer(nb_monomers, dimension, b, numConectors)

mc = Simulation(numSteps, dt, diffusionCte, p0, dt_relax, numRealisations)
mc.run()

msd = mc.get_msd_per_monomer()
mmsd = mc.get_avg_msd()
msrg = mc.get_msrg()
b2e = mc.get_b2e()

# Function to fit to the MSD
f = lambda t, A, alpha: A * t**alpha

# Fitted parameters
fit_params = mc.MSD_fit_mean()
Esempio n. 29
0
excludedVolumeCutOff = 5 * 0.2

############################################################################
############################################################################

############################################################################
# TESTS ####################################################################
############################################################################

if __name__ == '__main__':

    ### SIMPLE SIMULATIONS WITH EXCLUDED VOLUME

    # Polymer parameters
    p0 = RCLPolymer(**polymerParams)

    # Add excluded volume
    # First define the potential gradient
    # It should depend on the polymer only !!
    kappa = 3 * 0.008 / (p0.b**2)

    # Loci dependant kappa
    breakPoints = [5, 6, 10, 11, 70, 71]
    #    amplitude = np.ones(p0.numMonomers)/10.
    #    amplitude[breakPoints] = 1.
    #    kappa = kappa * amplitude

    #    repulsionForce = lambda polymer : (ExcludedVolume(polymer, excludedVolumeCutOff, method='spring-like').T * -kappa).T

    repulsionForce = lambda polymer: -kappa * LocalExcludedVolume(
def proba_vs_keepDFCL(polymerParams, simulationParams, x_Nc, errorbars=False):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + 'proba_VE_vs_Nc_NcinDF_adptEPSILONandSIGMA' + '.csv'

    with open('results/' + filename, 'w') as csvfile:

        plt.figure()
        rcParams.update({'axes.labelsize': 'xx-large'})
        rcParams.update({'legend.fontsize': 'xx-large'})
        rcParams.update({'xtick.labelsize': 'large'})
        plt.xlabel('Number of connectors in DF')
        plt.ylabel(
            r'$\mathbb{P}$(Repair)')  #('Mean first encounter time (sec)') #

        first_time = True

        N = polymerParams['numMonomers']

        for i, keepCL in enumerate([True, False]):

            if keepCL:
                labelkeep = "Keeping CLs in DF"

            else:
                labelkeep = 'Removing CLs in DF'
            polymerParams['keepCL'] = keepCL
            #            mfet = np.zeros(len(x_Nc))
            #            efet = np.zeros(len(x_Nc))
            probas = np.zeros(len(x_Nc))
            demiCI = np.zeros(len(x_Nc))
            for j, Nc in enumerate(x_Nc):
                print("Simulation for %s CL in DF" % Nc)
                simulationParams['Nc_inDamageFoci'] = Nc

                ### ADAPTIVE ENCOUNTER DISTANCE
                xi = 2 * (polymerParams['Nc'] + Nc) / ((N - 1) * (N - 2))
                #                scaleFactor = np.sqrt( (1-xi0)*np.sqrt(xi0) / ((1-xi)*np.s1qrt(xi)) )
                simulationParams['encounterDistance'] = adaptiveEpsilon(
                    xi, N, polymerParams['b'])

                #                ### ADAPTIVE CUTOFF RADIUS
                #                simulationParams['excludedVolume'] = 2 * adaptiveEpsilon(xi, N, polymerParams['b'])
                #
                ### ADAPTIVE dt
                simulationParams['dt'] = np.round(
                    (0.2 * simulationParams['encounterDistance'])**2 /
                    (2 * simulationParams['diffusionConstant']),
                    decimals=4) - 0.0001

                print("ε = %s and σ = %s" %
                      (simulationParams['encounterDistance'],
                       simulationParams['excludedVolumeCutOff']))

                p0 = RCLPolymer(**polymerParams)
                results = {**polymerParams, **simulationParams}
                mc = Experiment(p0, results, simulationParams,
                                "EncounterSimulation")
                #            oneTAD_Repair
                probas[j] = mc.results['repair_probability']
                demiCI[j] = mc.results['repair_CIhalflength']
                #                mfet[j] = mc.results['meanFET']
                #                efet[j] = mc.results['halfCI_FET']

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + '_' + str(j)
                    },
                    **mc.results
                })

            if errorbars:
                plt.errorbar(x=x_Nc,
                             y=probas,
                             yerr=demiCI,
                             fmt='-o',
                             label=labelkeep,
                             capsize=4)
            else:
                plt.plot(x_Nc, probas, '-o', label=labelkeep)

        plt.legend()
        plt.show()