def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac # 控制器 self.logger = logger self.last_target_update_episode = 0 self.device = th.device('cuda' if args.use_cuda else 'cpu') self.params = list(mac.parameters()) if args.mixer == "qatten": self.mixer = QattenMixer(args) elif args.mixer == "vdn": self.mixer = VDNMixer() elif args.mixer == "qmix": self.mixer = Mixer(args) else: raise Exception("mixer error") self.target_mixer = copy.deepcopy(self.mixer) self.params += list(self.mixer.parameters()) print('Mixer的参数量为: ', end='') print(get_parameters_num(self.mixer.parameters())) if self.args.optimizer == 'adam': self.optimiser = Adam(params=self.params, lr=args.lr) else: self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) # 深度复制有点浪费(例如重复动作选择器),但对任何MAC都应该有效。 # self.target_mac = copy.deepcopy(mac) # 设置日志打印间隔 self.log_stats_t = -self.args.learner_log_interval - 1 self.train_t = 0
def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac self.logger = logger self.last_target_update_episode = 0 self.device = th.device('cuda' if args.use_cuda else 'cpu') self.params = list(mac.parameters()) if args.mixer == "qatten": self.mixer = QattenMixer(args) elif args.mixer == "vdn": self.mixer = VDNMixer() elif args.mixer == "qmix": self.mixer = Mixer(args) else: raise "mixer error" self.target_mixer = copy.deepcopy(self.mixer) self.params += list(self.mixer.parameters()) print('Mixer Size: ') print(get_parameters_num(self.mixer.parameters())) if self.args.optimizer == 'adam': self.optimiser = Adam(params=self.params, lr=args.lr, weight_decay=getattr(args, "weight_decay", 0)) else: self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) # a little wasteful to deepcopy (e.g. duplicates action selector), but should work for any MAC self.target_mac = copy.deepcopy(mac) self.log_stats_t = -self.args.learner_log_interval - 1 self.train_t = 0 # priority replay self.use_per = getattr(self.args, 'use_per', False) self.return_priority = getattr(self.args, "return_priority", False) if self.use_per: self.priority_max = float('-inf') self.priority_min = float('inf')
class NQLearner: def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac self.logger = logger self.last_target_update_episode = 0 self.device = th.device('cuda' if args.use_cuda else 'cpu') self.params = list(mac.parameters()) if args.mixer == "qatten": self.mixer = QattenMixer(args) elif args.mixer == "vdn": self.mixer = VDNMixer(args) elif args.mixer == "qmix": self.mixer = Mixer(args) else: raise "mixer error" self.target_mixer = copy.deepcopy(self.mixer) self.params += list(self.mixer.parameters()) print('Mixer Size: ') print(get_parameters_num(self.mixer.parameters())) if self.args.optimizer == 'adam': self.optimiser = Adam(params=self.params, lr=args.lr) else: self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) # a little wasteful to deepcopy (e.g. duplicates action selector), but should work for any MAC self.target_mac = copy.deepcopy(mac) self.log_stats_t = -self.args.learner_log_interval - 1 self.train_t = 0 # th.autograd.set_detect_anomaly(True) def train(self, batch: EpisodeBatch, t_env: int, episode_num: int): # Get the relevant quantities rewards = batch["reward"][:, :-1] actions = batch["actions"][:, :-1] terminated = batch["terminated"][:, :-1].float() mask = batch["filled"][:, :-1].float() mask[:, 1:] = mask[:, 1:] * (1 - terminated[:, :-1]) avail_actions = batch["avail_actions"] # Calculate estimated Q-Values mac_out = [] self.mac.init_hidden(batch.batch_size) for t in range(batch.max_seq_length): agent_outs = self.mac.forward(batch, t=t) mac_out.append(agent_outs) mac_out = th.stack(mac_out, dim=1) # Concat over time # Pick the Q-Values for the actions taken by each agent chosen_action_qvals = th.gather(mac_out[:, :-1], dim=3, index=actions).squeeze( 3) # Remove the last dim chosen_action_qvals_ = chosen_action_qvals # Calculate the Q-Values necessary for the target with th.no_grad(): target_mac_out = [] self.target_mac.init_hidden(batch.batch_size) for t in range(batch.max_seq_length): target_agent_outs = self.target_mac.forward(batch, t=t) target_mac_out.append(target_agent_outs) # We don't need the first timesteps Q-Value estimate for calculating targets target_mac_out = th.stack(target_mac_out, dim=1) # Concat across time # Max over target Q-Values/ Double q learning mac_out_detach = mac_out.clone().detach() mac_out_detach[avail_actions == 0] = -9999999 cur_max_actions = mac_out_detach.max(dim=3, keepdim=True)[1] target_max_qvals = th.gather(target_mac_out, 3, cur_max_actions).squeeze(3) # Calculate n-step Q-Learning targets target_max_qvals = self.target_mixer(target_max_qvals, batch["state"]) if getattr(self.args, 'q_lambda', False): qvals = th.gather(target_mac_out, 3, batch["actions"]).squeeze(3) qvals = self.target_mixer(qvals, batch["state"]) targets = build_q_lambda_targets(rewards, terminated, mask, target_max_qvals, qvals, self.args.gamma, self.args.td_lambda) else: targets = build_td_lambda_targets(rewards, terminated, mask, target_max_qvals, self.args.n_agents, self.args.gamma, self.args.td_lambda) # Mixer chosen_action_qvals = self.mixer(chosen_action_qvals, batch["state"][:, :-1]) td_error = (chosen_action_qvals - targets.detach()) td_error = 0.5 * td_error.pow(2) mask = mask.expand_as(td_error) masked_td_error = td_error * mask loss = L_td = masked_td_error.sum() / mask.sum() # Optimise self.optimiser.zero_grad() loss.backward() grad_norm = th.nn.utils.clip_grad_norm_(self.params, self.args.grad_norm_clip) self.optimiser.step() if (episode_num - self.last_target_update_episode ) / self.args.target_update_interval >= 1.0: self._update_targets() self.last_target_update_episode = episode_num if t_env - self.log_stats_t >= self.args.learner_log_interval: self.logger.log_stat("loss_td", L_td.item(), t_env) self.logger.log_stat("grad_norm", grad_norm, t_env) mask_elems = mask.sum().item() self.logger.log_stat( "td_error_abs", (masked_td_error.abs().sum().item() / mask_elems), t_env) self.logger.log_stat("q_taken_mean", (chosen_action_qvals * mask).sum().item() / (mask_elems * self.args.n_agents), t_env) self.logger.log_stat("target_mean", (targets * mask).sum().item() / (mask_elems * self.args.n_agents), t_env) self.log_stats_t = t_env # print estimated matrix if self.args.env == "one_step_matrix_game": print_matrix_status(batch, self.mixer, mac_out) def _update_targets(self): self.target_mac.load_state(self.mac) if self.mixer is not None: self.target_mixer.load_state_dict(self.mixer.state_dict()) self.logger.console_logger.info("Updated target network") def cuda(self): self.mac.cuda() self.target_mac.cuda() if self.mixer is not None: self.mixer.cuda() self.target_mixer.cuda() def save_models(self, path): self.mac.save_models(path) if self.mixer is not None: th.save(self.mixer.state_dict(), "{}/mixer.th".format(path)) th.save(self.optimiser.state_dict(), "{}/opt.th".format(path)) def load_models(self, path): self.mac.load_models(path) # Not quite right but I don't want to save target networks self.target_mac.load_models(path) if self.mixer is not None: self.mixer.load_state_dict( th.load("{}/mixer.th".format(path), map_location=lambda storage, loc: storage)) self.optimiser.load_state_dict( th.load("{}/opt.th".format(path), map_location=lambda storage, loc: storage))