def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac self.logger = logger self.params = list(mac.parameters()) #added by keegan self.critic = LIIRCritic(scheme, args).to(device) self.last_target_update_episode = 0 self.mixer = None if args.mixer is not None: if args.mixer == "vdn": self.mixer = VDNMixer() elif args.mixer == "qmix": self.mixer = NoiseQMixer(args) else: raise ValueError("Mixer {} not recognised.".format(args.mixer)) self.params += list(self.mixer.parameters()) self.target_mixer = copy.deepcopy(self.mixer) discrim_input = np.prod(self.args.state_shape) + self.args.n_agents * self.args.n_actions self.n_agents = self.args.n_agents if self.args.rnn_discrim: self.rnn_agg = RNNAggregator(discrim_input, args) self.discrim = Discrim(args.rnn_agg_size, self.args.noise_dim, args) self.params += list(self.discrim.parameters()) self.params += list(self.rnn_agg.parameters()) else: self.discrim = Discrim(discrim_input, self.args.noise_dim, args) self.params += list(self.discrim.parameters()) self.discrim_loss = th.nn.CrossEntropyLoss(reduction="none") self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) self.target_mac = copy.deepcopy(mac) self.log_stats_t = -self.args.learner_log_interval - 1
class QLearner: def __init__(self, mac, scheme, logger, args): self.args = args self.mac = mac self.logger = logger self.params = list(mac.parameters()) self.last_target_update_episode = 0 self.mixer = None if args.mixer is not None: if args.mixer == "vdn": self.mixer = VDNMixer() elif args.mixer == "qmix": self.mixer = NoiseQMixer(args) else: raise ValueError("Mixer {} not recognised.".format(args.mixer)) self.params += list(self.mixer.parameters()) self.target_mixer = copy.deepcopy(self.mixer) discrim_input = np.prod( self.args.state_shape) + self.args.n_agents * self.args.n_actions if self.args.rnn_discrim: self.rnn_agg = RNNAggregator(discrim_input, args) self.discrim = Discrim(args.rnn_agg_size, self.args.noise_dim, args) self.params += list(self.discrim.parameters()) self.params += list(self.rnn_agg.parameters()) else: self.discrim = Discrim(discrim_input, self.args.noise_dim, args) self.params += list(self.discrim.parameters()) self.discrim_loss = th.nn.CrossEntropyLoss(reduction="none") self.optimiser = RMSprop(params=self.params, lr=args.lr, alpha=args.optim_alpha, eps=args.optim_eps) self.target_mac = copy.deepcopy(mac) self.log_stats_t = -self.args.learner_log_interval - 1 def train(self, batch: EpisodeBatch, t_env: int, episode_num: int): # Get the relevant quantities rewards = batch["reward"][:, :-1] actions = batch["actions"][:, :-1] terminated = batch["terminated"][:, :-1].float() mask = batch["filled"][:, :-1].float() mask[:, 1:] = mask[:, 1:] * (1 - terminated[:, :-1]) avail_actions = batch["avail_actions"] noise = batch["noise"][:, 0].unsqueeze(1).repeat(1, rewards.shape[1], 1) # Calculate estimated Q-Values mac_out = [] self.mac.init_hidden(batch.batch_size) for t in range(batch.max_seq_length): agent_outs = self.mac.forward(batch, t=t) mac_out.append(agent_outs) mac_out = th.stack(mac_out, dim=1) # Concat over time # Pick the Q-Values for the actions taken by each agent chosen_action_qvals = th.gather(mac_out[:, :-1], dim=3, index=actions).squeeze( 3) # Remove the last dim # Calculate the Q-Values necessary for the target target_mac_out = [] self.target_mac.init_hidden(batch.batch_size) for t in range(batch.max_seq_length): target_agent_outs = self.target_mac.forward(batch, t=t) target_mac_out.append(target_agent_outs) # We don't need the first timesteps Q-Value estimate for calculating targets target_mac_out = th.stack(target_mac_out[1:], dim=1) # Concat across time # Mask out unavailable actions #target_mac_out[avail_actions[:, 1:] == 0] = -9999999 # From OG deepmarl # Max over target Q-Values if self.args.double_q: # Get actions that maximise live Q (for double q-learning) #mac_out[avail_actions == 0] = -9999999 cur_max_actions = mac_out[:, 1:].max(dim=3, keepdim=True)[1] target_max_qvals = th.gather(target_mac_out, 3, cur_max_actions).squeeze(3) else: target_max_qvals = target_mac_out.max(dim=3)[0] # Mix if self.mixer is not None: chosen_action_qvals = self.mixer(chosen_action_qvals, batch["state"][:, :-1], noise) target_max_qvals = self.target_mixer(target_max_qvals, batch["state"][:, 1:], noise) # Discriminator #mac_out[avail_actions == 0] = -9999999 q_softmax_actions = th.nn.functional.softmax(mac_out[:, :-1], dim=3) if self.args.hard_qs: maxs = th.max(mac_out[:, :-1], dim=3, keepdim=True)[1] zeros = th.zeros_like(q_softmax_actions) zeros.scatter_(dim=3, index=maxs, value=1) q_softmax_actions = zeros q_softmax_agents = q_softmax_actions.reshape( q_softmax_actions.shape[0], q_softmax_actions.shape[1], -1) states = batch["state"][:, :-1] state_and_softactions = th.cat([q_softmax_agents, states], dim=2) if self.args.rnn_discrim: h_to_use = th.zeros(size=(batch.batch_size, self.args.rnn_agg_size)).to( states.device) hs = th.ones_like(h_to_use) for t in range(batch.max_seq_length - 1): hs = self.rnn_agg(state_and_softactions[:, t], hs) for b in range(batch.batch_size): if t == batch.max_seq_length - 2 or (mask[b, t] == 1 and mask[b, t + 1] == 0): # This is the last timestep of the sequence h_to_use[b] = hs[b] s_and_softa_reshaped = h_to_use else: s_and_softa_reshaped = state_and_softactions.reshape( -1, state_and_softactions.shape[-1]) if self.args.mi_intrinsic: s_and_softa_reshaped = s_and_softa_reshaped.detach() discrim_prediction = self.discrim(s_and_softa_reshaped) # Cross-Entropy target_repeats = 1 if not self.args.rnn_discrim: target_repeats = q_softmax_actions.shape[1] discrim_target = batch["noise"][:, 0].long().detach().max( dim=1)[1].unsqueeze(1).repeat(1, target_repeats).reshape(-1) discrim_loss = self.discrim_loss(discrim_prediction, discrim_target) if self.args.rnn_discrim: averaged_discrim_loss = discrim_loss.mean() else: masked_discrim_loss = discrim_loss * mask.reshape(-1) averaged_discrim_loss = masked_discrim_loss.sum() / mask.sum() self.logger.log_stat("discrim_loss", averaged_discrim_loss.item(), t_env) # Calculate 1-step Q-Learning targets targets = rewards + self.args.gamma * (1 - terminated) * target_max_qvals if self.args.mi_intrinsic: assert self.args.rnn_discrim is False targets = targets + self.args.mi_scaler * discrim_loss.view_as( rewards) # Td-error td_error = (chosen_action_qvals - targets.detach()) mask = mask.expand_as(td_error) # 0-out the targets that came from padded data masked_td_error = td_error * mask # Normal L2 loss, take mean over actual data loss = (masked_td_error**2).sum() / mask.sum() loss = loss + self.args.mi_loss * averaged_discrim_loss # Optimise self.optimiser.zero_grad() loss.backward() grad_norm = th.nn.utils.clip_grad_norm_(self.params, self.args.grad_norm_clip) self.optimiser.step() if (episode_num - self.last_target_update_episode ) / self.args.target_update_interval >= 1.0: self._update_targets() self.last_target_update_episode = episode_num if t_env - self.log_stats_t >= self.args.learner_log_interval: self.logger.log_stat("loss", loss.item(), t_env) self.logger.log_stat("grad_norm", grad_norm, t_env) mask_elems = mask.sum().item() self.logger.log_stat( "td_error_abs", (masked_td_error.abs().sum().item() / mask_elems), t_env) self.logger.log_stat("q_taken_mean", (chosen_action_qvals * mask).sum().item() / (mask_elems * self.args.n_agents), t_env) self.logger.log_stat("target_mean", (targets * mask).sum().item() / (mask_elems * self.args.n_agents), t_env) self.log_stats_t = t_env def _update_targets(self): self.target_mac.load_state(self.mac) if self.mixer is not None: self.target_mixer.load_state_dict(self.mixer.state_dict()) self.logger.console_logger.info("Updated target network") def cuda(self): self.mac.cuda() self.target_mac.cuda() self.discrim.cuda() if self.args.rnn_discrim: self.rnn_agg.cuda() if self.mixer is not None: self.mixer.cuda() self.target_mixer.cuda() def save_models(self, path): self.mac.save_models(path) if self.mixer is not None: th.save(self.mixer.state_dict(), "{}/mixer.th".format(path)) th.save(self.optimiser.state_dict(), "{}/opt.th".format(path)) def load_models(self, path): self.mac.load_models(path) self.target_mac.load_models(path) if self.mixer is not None: self.mixer.load_state_dict( th.load("{}/mixer.th".format(path), map_location=lambda storage, loc: storage)) self.optimiser.load_state_dict( th.load("{}/opt.th".format(path), map_location=lambda storage, loc: storage))