Esempio n. 1
0
def test_init_pmf():
    """
  Expect to create a new PMF with given hypotheses.
  """

    test = {0: 0.25, 0.5: 0.25, 0.75: 0.25, 1: 0.25}
    hypotheses_a = init_pmf(tuple(test.keys()))
    assert hypotheses_a == test
    hypotheses_b = init_pmf(test)
    assert hypotheses_b == test
    hypotheses_c = init_pmf()
    assert hypotheses_c == {}
Esempio n. 2
0
def test_get_pmf_value():
    """
  Expect to get a single number representing the best fit for the PMF.
  """

    hypotheses = init_pmf((0, 0.5, 0.75, 1))
    assert get_pmf_value(hypotheses) == 0.5625
def test_update_pmf():
    """
    Expect to update a PMF with given data,
    require and use a likelihood function to update.
    """
    def likelihood(data, hypothesis):
        return hypothesis

    hypotheses = init_pmf((0, 0.5, 0.75, 1))
    hypotheses = update_pmf(hypotheses, {}, likelihood)
    assert hypotheses == {0: 0.0, 0.5: 2 / 9, 0.75: 1 / 3, 1: 4 / 9}
Esempio n. 4
0
def get_distribution(card_parameters, kind):
    """
    Parse own distribution hypotheses,
    changing the keys back into numbers.
    """

    key = '{kind}_distribution'.format(kind=kind)
    if key in card_parameters:
        distribution = card_parameters[key]
        distribution = deliver_distribution(distribution)
    else:
        init = init_guess if kind == 'guess' else init_slip
        distribution = {
            h: 1 - (init - h)**2
            for h in [h / precision for h in range(1, precision)]
        }
        card_parameters[key] = distribution
    if kind == 'guess':
        return init_pmf(distribution)
    if kind == 'slip':
        return init_pmf(distribution)
Esempio n. 5
0
def main(num_learners=1000, num_cards=50):
    d = create_responses(num_learners, num_cards)
    responses, learners, cards = d['responses'], d['learners'], d['cards']

    precision = 20

    my_cards = [{
        'name': card['name'],
        'guess_distribution': init_pmf({
            h: 1 - (init_guess - h) ** 2
            for h in [h / precision for h in range(1, precision)]}),
        'slip_distribution': init_pmf({
            h:  1 - (init_slip - h) ** 2
            for h in [h / precision for h in range(1, precision)]}),
        'transit': init_transit,
    } for card in cards]

    my_learners = [{
        'name': learner['name'],
        'learned': init_learned,
    } for learner in learners]

    latest_response_per_learner = {}

    for i, response in enumerate(responses):
        # response keys: learner, card, time, score

        if response['learner'] in latest_response_per_learner:
            prev_response = latest_response_per_learner[response['learner']]
        else:
            prev_response = {
                'time': response['time'],
                'prev_learned': init_learned,
            }

        my_learner = get_learner(response['learner'], my_learners)
        my_card = get_card(response['card'], my_cards)

        response['prev_learned'] = my_learner['learned']

        c = update(learned=my_learner['learned'],
                   guess_distribution=my_card['guess_distribution'],
                   slip_distribution=my_card['slip_distribution'],
                   score=response['score'],
                   time_delta=response['time'] - prev_response['time'])

        my_learner['learned'] = c['learned']
        my_card['guess_distribution'] = c['guess_distribution']
        my_card['slip_distribution'] = c['slip_distribution']

        latest_response_per_learner[response['learner']] = response

    # Compute the error rates.
    # Error should sqrt(sum( (o - x)^2 for o in list ))
    guess_error, slip_error, transit_error = 0, 0, 0

    for card in cards:
        my_card = get_card(card['name'], my_cards)
        my_card['guess'] = get_guess_pmf_value(my_card['guess_distribution'])
        my_card['slip'] = get_slip_pmf_value(my_card['slip_distribution'])
        guess_error += (my_card['guess'] - card['guess']) ** 2
        slip_error += (my_card['slip'] - card['slip']) ** 2
        transit_error += (my_card['transit'] - card['transit']) ** 2

    print('guess_error', sqrt(guess_error / len(my_cards)))
    print('slip_error', sqrt(slip_error / len(my_cards)))
    print('transit_error', sqrt(transit_error / len(my_cards)))

    guess_error, slip_error, transit_error = 0, 0, 0

    for card in cards:
        guess_error += (init_guess - card['guess']) ** 2
        slip_error += (init_slip - card['slip']) ** 2
        transit_error += (init_transit - card['transit']) ** 2

    print('CONTROL guess_error', sqrt(guess_error / len(my_cards)))
    print('CONTROL slip_error', sqrt(slip_error / len(my_cards)))
    print('CONTROL transit_error', sqrt(transit_error / len(my_cards)))