def define_inner_modules(self, name, activations, filter_shapes, bias_shapes, ksizes, pool_strides, keep_prob): self.layers = {} # first convolutional layer self.layers["conv0"] = mod.TimeConvolutionalLayerModule( "conv0", activations[0], filter_shapes[0], [1, 1, 1, 1], bias_shapes[0]) lateral_filter_shape = filter_shapes[0] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral0"] = mod.Conv2DModule("lateral0", lateral_filter_shape, [1, 1, 1, 1]) # first max-pooling layer self.layers["pool0"] = mod.MaxPoolingModule("pool0", ksizes[0], pool_strides[0]) # second convolutional layer self.layers["conv1"] = mod.TimeConvolutionalLayerModule( name + "conv1", activations[1], filter_shapes[1], [1, 1, 1, 1], bias_shapes[1]) lateral_filter_shape = filter_shapes[1] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral1"] = mod.Conv2DModule("lateral1", lateral_filter_shape, [1, 1, 1, 1]) # second max-pooling layer self.layers["pool1"] = mod.MaxPoolingModule("pool1", ksizes[0], pool_strides[0]) self.layers["flat_pool1"] = mod.FlattenModule("flat_pool1") # first fully-connected layer self.layers["fc0"] = mod.FullyConnectedLayerModule( "fc0", activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) # dropout self.layers["dropout0"] = mod.DropoutModule("dropout0", keep_prob) # second fully-connected layer self.layers["fc1"] = mod.FullyConnectedLayerModule( "fc1", activations[3], np.prod(bias_shapes[2]), np.prod(bias_shapes[3])) # connections self.layers["lateral0"].add_input(self.layers["conv0"].preactivation) self.layers["conv0"].add_input(self.layers["lateral0"], -1) self.layers["pool0"].add_input(self.layers["conv0"]) self.layers["conv1"].add_input(self.layers["pool0"], 0) self.layers["lateral1"].add_input(self.layers["conv1"].preactivation) self.layers["conv1"].add_input(self.layers["lateral1"], -1) self.layers["pool1"].add_input(self.layers["conv1"]) self.layers["flat_pool1"].add_input(self.layers["pool1"]) self.layers["fc0"].add_input(self.layers["flat_pool1"]) self.layers["dropout0"].add_input(self.layers["fc0"]) self.layers["fc1"].add_input(self.layers["dropout0"]) # set input and output self.input_module = self.layers["conv0"] self.output_module = self.layers["fc1"]
def define_inner_modules(self, name, in_size, cell_size): """Typical LSTM cell with three gates. Detailed tutorial see http://colah.github.io/posts/2015-08-Understanding-LSTMs/ """ self.in_size = in_size self.cell_size = cell_size self.input_module = mod.ConcatModule("concat", 1, in_size + cell_size) # Three gates for input, output, cell state f_t = mod.FullyConnectedLayerModule("f_t", tf.sigmoid, in_size + cell_size, cell_size) i_t = mod.FullyConnectedLayerModule("i_t", tf.sigmoid, in_size + cell_size, cell_size) o_t = mod.FullyConnectedLayerModule("o_t", tf.sigmoid, in_size + cell_size, cell_size) # transformed input and last time hidden-state CHat_t = mod.FullyConnectedLayerModule("CHat_t", tf.tanh, in_size + cell_size, cell_size) # cell states related self.C_t = mod.AddModule("C_t") tanh_C_t = mod.ActivationModule("tanh_C_t", tf.tanh) # residual of last time cell state state_residual = mod.EleMultiModule("state_residual") state_update = mod.EleMultiModule( "state_update") # i_t(eleMulti)CHat_t # hidden states self.h_t = mod.EleMultiModule("h_t") # making connections self.input_module.add_input(self.h_t, -1) f_t.add_input(self.input_module) state_residual.add_input(self.C_t, -1) state_residual.add_input(f_t, 0) i_t.add_input(self.input_module) CHat_t.add_input(self.input_module) state_update.add_input(i_t, 0) state_update.add_input(CHat_t, 0) self.C_t.add_input(state_update) # C_t = state_redidual + state_update self.C_t.add_input(state_residual) o_t.add_input(self.input_module) tanh_C_t.add_input(self.C_t) self.h_t.add_input(o_t, 0) self.h_t.add_input(tanh_C_t, 0) # set input and output self.output_module = self.h_t
def define_inner_modules(self, name, is_training, activations, filter_shapes, bias_shapes, ksizes, pool_strides, keep_prob): self.layers = {} # first convolutional layer self.layers["conv0"] = mod.TimeConvolutionalLayerWithBatchNormalizationModule("conv0", bias_shapes[0][-1], is_training, 0.0, 1.0, 0.5, activations[0], filter_shapes[0], [1,1,1,1], bias_shapes[0]) lateral_filter_shape = filter_shapes[0] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral0"] = mod.Conv2DModule("lateral0", lateral_filter_shape, [1,1,1,1]) self.layers["lateral0_batchnorm"] = mod.BatchNormalizationModule("lateral0_batchnorm", lateral_filter_shape[-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) # first max-pooling layer self.layers["pool0"] = mod.MaxPoolingModule("pool0", ksizes[0], pool_strides[0]) # second convolutional layer self.layers["conv1"] = mod.TimeConvolutionalLayerWithBatchNormalizationModule(name + "conv1", bias_shapes[1][-1], is_training, 0.0, 1.0, 0.5, activations[1], filter_shapes[1], [1,1,1,1], bias_shapes[1]) lateral_filter_shape = filter_shapes[1] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral1"] = mod.Conv2DModule("lateral1", lateral_filter_shape, [1,1,1,1]) self.layers["lateral1_batchnorm"] = mod.BatchNormalizationModule("lateral1_batchnorm", lateral_filter_shape[-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) # second max-pooling layer self.layers["pool1"] = mod.MaxPoolingModule("pool1", ksizes[0], pool_strides[0]) self.layers["flat_pool1"] = mod.FlattenModule("flat_pool1") # first fully-connected layer self.layers["fc0"] = mod.FullyConnectedLayerModule("fc0", activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) # dropout self.layers["dropout0"] = mod.DropoutModule("dropout0", keep_prob) # second fully-connected layer self.layers["fc1"] = mod.FullyConnectedLayerModule("fc1", activations[3], np.prod(bias_shapes[2]), np.prod(bias_shapes[3])) # connections self.layers["lateral0"].add_input(self.layers["conv0"].preactivation) self.layers["lateral0_batchnorm"].add_input(self.layers["lateral0"]) self.layers["conv0"].add_input(self.layers["lateral0_batchnorm"], -1) self.layers["pool0"].add_input(self.layers["conv0"]) self.layers["conv1"].add_input(self.layers["pool0"], 0) self.layers["lateral1"].add_input(self.layers["conv1"].preactivation) self.layers["lateral1_batchnorm"].add_input(self.layers["lateral1"]) self.layers["conv1"].add_input(self.layers["lateral1_batchnorm"], -1) self.layers["pool1"].add_input(self.layers["conv1"]) self.layers["flat_pool1"].add_input(self.layers["pool1"]) self.layers["fc0"].add_input(self.layers["flat_pool1"]) self.layers["dropout0"].add_input(self.layers["fc0"]) self.layers["fc1"].add_input(self.layers["dropout0"]) # set input and output self.input_module = self.layers["conv0"] self.output_module = self.layers["fc1"]
def define_inner_modules(self, name, activations, filter_shapes, strides, bias_shapes, ksizes, pool_strides): self.layers = {} # first convolutional layer self.layers["conv0"] = mod.ConvolutionalLayerModule( "conv0", activations[0], filter_shapes[0], strides[0], bias_shapes[0]) # first max-pooling layer self.layers["pool0"] = mod.MaxPoolingModule("pool0", ksizes[0], pool_strides[0]) # second convolutional layer self.layers["conv1"] = mod.ConvolutionalLayerModule( name + "conv1", activations[1], filter_shapes[1], strides[1], bias_shapes[1]) # second max-pooling layer self.layers["pool1"] = mod.MaxPoolingModule("pool1", ksizes[0], pool_strides[0]) self.layers["flat_pool1"] = mod.FlattenModule("flat_pool1") # first fully-connected layer self.layers["fc0"] = mod.FullyConnectedLayerModule( "fc0", activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) # second fully-connected layer self.layers["fc1"] = mod.FullyConnectedLayerModule( "fc1", activations[3], np.prod(bias_shapes[2]), np.prod(bias_shapes[3])) # connections self.layers["pool0"].add_input(self.layers["conv0"]) self.layers["conv1"].add_input(self.layers["pool0"]) self.layers["pool1"].add_input(self.layers["conv1"]) self.layers["flat_pool1"].add_input(self.layers["pool1"]) self.layers["fc0"].add_input(self.layers["flat_pool1"]) self.layers["fc1"].add_input(self.layers["fc0"]) # set input and output self.input_module = self.layers["conv0"] self.output_module = self.layers["fc1"]
def define_inner_modules(self, name, is_training, activations, conv_filter_shapes, bias_shapes, ksizes, pool_strides, topdown_filter_shapes, topdown_output_shapes, keep_prob, FLAGS): # create all modules of the network # ----- self.layers = {} with tf.name_scope('input_normalization'): self.layers["inp_norm"] = m.NormalizationModule("inp_norm") with tf.name_scope('convolutional_layer_0'): if FLAGS.batchnorm: self.layers["conv0"] = m.TimeConvolutionalLayerWithBatchNormalizationModule("conv0", bias_shapes[0][-1], is_training, 0.0, 1.0, 0.5, activations[0], conv_filter_shapes[0], [1,1,1,1], bias_shapes[0]) else: self.layers["conv0"] = m.TimeConvolutionalLayerModule("conv0", activations[0], conv_filter_shapes[0], [1,1,1,1], bias_shapes[0]) with tf.name_scope('lateral_layer_0'): lateral_filter_shape = conv_filter_shapes[0] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral0"] = m.Conv2DModule("lateral0", lateral_filter_shape, [1,1,1,1]) self.layers["lateral0_batchnorm"] = m.BatchNormalizationModule("lateral0_batchnorm", lateral_filter_shape[-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) with tf.name_scope('pooling_layer_0'): self.layers["pool0"] = m.MaxPoolingWithArgmaxModule("pool0", ksizes[0], pool_strides[0]) with tf.name_scope('dropout_layer_0'): self.layers['dropoutc0'] = m.DropoutModule('dropoutc0', keep_prob=keep_prob) with tf.name_scope('convolutional_layer_1'): if FLAGS.batchnorm: self.layers["conv1"] = m.TimeConvolutionalLayerWithBatchNormalizationModule("conv1", bias_shapes[1][-1], is_training, 0.0, 1.0, 0.5, activations[1], conv_filter_shapes[1], [1,1,1,1], bias_shapes[1]) else: self.layers["conv1"] = m.TimeConvolutionalLayerModule("conv1", activations[1], conv_filter_shapes[1], [1,1,1,1], bias_shapes[1]) with tf.name_scope('topdown_layer_0'): self.layers["topdown0"] = m.Conv2DTransposeModule("topdown0", topdown_filter_shapes[0], [1,2,2,1], topdown_output_shapes[0]) self.layers["topdown0_batchnorm"] = m.BatchNormalizationModule("topdown0_batchnorm",topdown_output_shapes[0][-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) with tf.name_scope('lateral_layer_1'): lateral_filter_shape = conv_filter_shapes[1] tmp = lateral_filter_shape[2] lateral_filter_shape[2] = lateral_filter_shape[3] lateral_filter_shape[3] = tmp self.layers["lateral1"] = m.Conv2DModule("lateral1", lateral_filter_shape, [1,1,1,1]) self.layers["lateral1_batchnorm"] = m.BatchNormalizationModule("lateral1_batchnorm", lateral_filter_shape[-1], is_training, beta_init=0.0, gamma_init=0.1, ema_decay_rate=0.5, moment_axes=[0,1,2], variance_epsilon=1e-3) with tf.name_scope('pooling_layer_1'): self.layers["pool1"] = m.MaxPoolingWithArgmaxModule("pool1", ksizes[0], pool_strides[1]) self.layers["flatpool1"] = m.FlattenModule("flatpool1") with tf.name_scope('dropout_layer_1'): self.layers['dropoutc1'] = m.DropoutModule('dropoutc1', keep_prob=keep_prob) with tf.name_scope('fully_connected_layer_0'): if FLAGS.batchnorm: self.layers["fc0"] = m.FullyConnectedLayerWithBatchNormalizationModule("fc0", bias_shapes[-1][-1], is_training, 0.0, 1.0, 0.5, activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) else: self.layers["fc0"] = m.FullyConnectedLayerModule("fc0", activations[2], int(np.prod(np.array(bias_shapes[1]) / np.array(pool_strides[1]))), np.prod(bias_shapes[2])) with tf.name_scope('unpooling_layer_1'): self.layers["unpool1"] = m.UnpoolingModule("unpool1", ksizes[0], pool_strides[0]) with tf.name_scope('unconvolution_layer_1'): self.layers["unconv1"] = m.UnConvolutionModule("unconv1", conv_filter_shapes[1],[1,1,1,1], topdown_output_shapes[0][:1]+ bias_shapes[1][1:]) with tf.name_scope('unpooling_layer_0'): self.layers["unpool0"] = m.UnpoolingModule("unpool0", ksizes[0], pool_strides[0]) with tf.name_scope('unconvolution_layer_0'): self.layers["unconv0"] = m.UnConvolutionModule("unconv0", conv_filter_shapes[0],[1,1,1,1],topdown_output_shapes[0]) # connect all modules of the network in a meaningful way # ----- with tf.name_scope('wiring_of_modules'): self.layers["conv0"].add_input(self.layers["inp_norm"], 0) self.layers["pool0"].add_input(self.layers["conv0"]) self.layers["dropoutc0"].add_input(self.layers["pool0"]) self.layers["conv1"].add_input(self.layers["dropoutc0"], 0) self.layers["pool1"].add_input(self.layers["conv1"]) self.layers["dropoutc1"].add_input(self.layers["pool1"]) self.layers["flatpool1"].add_input(self.layers["dropoutc1"]) self.layers["fc0"].add_input(self.layers["flatpool1"]) #try out unpooling self.layers["unpool1"].add_input(self.layers["pool1"]) self.layers["unconv1"].add_input(self.layers["unpool1"]) self.layers["unconv1"].add_input(self.layers["conv1"]) self.layers["unpool0"].add_input(self.layers["unconv1"]) self.layers["unpool0"].add_input(self.layers["pool0"]) self.layers["unconv0"].add_input(self.layers["unpool0"]) self.layers["unconv0"].add_input(self.layers["conv0"]) if "L" in FLAGS.architecture: if FLAGS.batchnorm: self.layers["lateral0"].add_input(self.layers["conv0"].preactivation) self.layers["lateral0_batchnorm"].add_input(self.layers["lateral0"]) self.layers["conv0"].add_input(self.layers["lateral0_batchnorm"], -1) self.layers["lateral1"].add_input(self.layers["conv1"].preactivation) self.layers["lateral1_batchnorm"].add_input(self.layers["lateral1"]) self.layers["conv1"].add_input(self.layers["lateral1_batchnorm"], -1) else: self.layers["lateral0"].add_input(self.layers["conv0"].preactivation) self.layers["conv0"].add_input(self.layers["lateral0"], -1) self.layers["lateral1"].add_input(self.layers["conv1"].preactivation) self.layers["conv1"].add_input(self.layers["lateral1"], -1) if "T" in FLAGS.architecture: if FLAGS.batchnorm: self.layers["topdown0_batchnorm"].add_input(self.layers["topdown0"]) self.layers["conv0"].add_input(self.layers["topdown0_batchnorm"], -1) self.layers["topdown0"].add_input(self.layers["conv1"].preactivation) else: self.layers["conv0"].add_input(self.layers["topdown0"], -1) self.layers["topdown0"].add_input(self.layers["conv1"].preactivation) with tf.name_scope('input_output'): self.input_module = self.layers["inp_norm"] self.output_module = self.layers["fc0"]
trainY = reformdata_train[WINDOW+delay:, 0:s_train.shape[1]] testX = reformdata_test[:-WINDOW-delay] testY = reformdata_test[WINDOW+delay:, 0:s_test.shape[1]] CELL_SIZE = 300 TIME_DEPTH = 5 BATCH_SIZE = 1 NFFT = 128 in_size = (NFFT + 1) * WINDOW out_size = NFFT + 1 inp = mod.ConstantPlaceholderModule("input", shape=(BATCH_SIZE, in_size)) target = mod.ConstantPlaceholderModule("target", shape=(BATCH_SIZE, out_size)) cell = lstm.LSTM_Cell("lstm_cell", in_size, CELL_SIZE) out_prediction = mod.FullyConnectedLayerModule("out_prediction", tf.identity, CELL_SIZE, out_size) err = mod.ErrorModule("mse", mean_squared_error) opt = mod.OptimizerModule("adam", tf.train.AdamOptimizer()) # Connect input cell.add_input(inp) out_prediction.add_input(cell) err.add_input(target) err.add_input(out_prediction) opt.add_input(err) opt.create_output(TIME_DEPTH) out_prediction.create_output(1) myplot = Plot() train_length = trainX.shape[0] #2000#