species_list = ['O3'] #Get variables for location chosen obsfile, loc_label, model_index = modules.location_check(location) for species in species_list: units, obs_data_name, unit_cut, species_type, actual_species_name, obs_switch, model_cut_switch, ofac = modules.obs_variable_finder( species) #set GAW_switch on or off. 'y' = multiple location GAW sim, 'n' = 1 location output GAW_switch = 'y' # Read in the model output if GAW_switch == 'y': model, names = modules.readfile_GAW( "binary_logs/GEOS_v90103_2x2.5_GAW_O3_logs.npy", model_index) #model index represents gaw location else: model, names = modules.readfile( "binary_logs/GEOS_v90103_4x5_CV_logs.npy", "001") #001 represents single location # Processes the model date date = model[:, 0] time = model[:, 1] model_time = modules.date_process(date, time) #Define sampling intervals samp_spacing = 1. / 24. #Convert model time array into numpy array
if met[counter] == 'MERRA': model, names = modules.readfile( "", "001") #001 represents single location if res[counter] == '0.5x0.666 Nested Europe': if met[counter] == 'GEOS 5': model, names = modules.readfile( "", "001") #001 represents single location if met[counter] == 'MERRA': model, names = modules.readfile( "", "001") #001 represents single location if GAW_switch[counter] == 'y': if mversion[counter] == 'v90102': if res[counter] == '4x5': if met[counter] == 'GEOS 5': model, names = modules.readfile_GAW( "", model_index) #model index represents gaw location if met[counter] == 'MERRA': model, names = modules.readfile_GAW( "", model_index) #model index represents gaw location if res[counter] == '2x2.5': if met[counter] == 'GEOS 5': model, names = modules.readfile_GAW( "", model_index) #model index represents gaw location if met[counter] == 'MERRA': model, names = modules.readfile_GAW( "", model_index) #model index represents gaw location if mversion[counter] == 'v90103': if res[counter] == '4x5': if met[counter] == 'GEOS 5': model, names = modules.readfile_GAW(
#Met. #GEOS 5 #MERRA met = 'GEOS 5' #Get variables for location chosen obsfile, loc_label, model_index = modules.location_check(location) #set GAW_switch on or off. 'y' = multiple location GAW sim, 'n' = 1 location output GAW_switch = 'y' # Read in the model output if GAW_switch == 'y': model, names = modules.readfile_GAW( "binary_logs/convectoff_gaw_logs_O3.npy", model_index) #model index represents gaw location else: model, names = modules.readfile( "binary_logs/GEOS_v90103_4x5_MERRA_Mace_Head_logs.npy", "001") #001 represents single location # Processes the model date date = model[:, 0] time = model[:, 1] model_time = modules.date_process(date, time) #Define sampling intervals samp_spacing = 1. / 24. #Convert model time array into numpy array
#Calculate Nyquist frequency, Si and Si x 2 for normalisation checks. #nyquist_freq_lomb_model = frequencies[-1] #Si_lomb_model = np.mean(fy)*nyquist_freq_lomb_model #print nyquist_freq_lomb_model, Si_lomb_model, Si_lomb_model*2 model_list = [ 'binary_logs/GEOS_v90103_4x5_GAW_O3_logs.npy', 'binary_logs/convectoff_gaw_logs_O3.npy', 'binary_logs/drydepoff_gaw_logs_O3.npy', 'binary_logs/emissionsoff_gaw_logs_O3.npy', 'binary_logs/transportoff_gaw_logs_O3.npy' ] #loop through diff models and get respective obs. data for i in model_list: model, names = modules.readfile_GAW(i, model_index) # Processes the model date date = model[:, 0] time = model[:, 1] model_time = modules.date_process(date, time) print counter print res[counter] print met[counter] #print date #print time #Define sampling intervals samp_spacing = 1. / 24.