Esempio n. 1
0
        species_list = ['O3']

#Get variables for location chosen
    obsfile, loc_label, model_index = modules.location_check(location)

    for species in species_list:
        units, obs_data_name, unit_cut, species_type, actual_species_name, obs_switch, model_cut_switch, ofac = modules.obs_variable_finder(
            species)

        #set GAW_switch on or off. 'y' = multiple location GAW sim, 'n' = 1 location output
        GAW_switch = 'y'

        # Read in the model output
        if GAW_switch == 'y':
            model, names = modules.readfile_GAW(
                "binary_logs/GEOS_v90103_2x2.5_GAW_O3_logs.npy",
                model_index)  #model index represents gaw location
        else:
            model, names = modules.readfile(
                "binary_logs/GEOS_v90103_4x5_CV_logs.npy",
                "001")  #001 represents single location

# Processes the model date
        date = model[:, 0]
        time = model[:, 1]
        model_time = modules.date_process(date, time)

        #Define sampling intervals
        samp_spacing = 1. / 24.

        #Convert model time array into numpy array
Esempio n. 2
0
                if met[counter] == 'MERRA':
                    model, names = modules.readfile(
                        "", "001")  #001 represents single location
            if res[counter] == '0.5x0.666 Nested Europe':
                if met[counter] == 'GEOS 5':
                    model, names = modules.readfile(
                        "", "001")  #001 represents single location
                if met[counter] == 'MERRA':
                    model, names = modules.readfile(
                        "", "001")  #001 represents single location

    if GAW_switch[counter] == 'y':
        if mversion[counter] == 'v90102':
            if res[counter] == '4x5':
                if met[counter] == 'GEOS 5':
                    model, names = modules.readfile_GAW(
                        "", model_index)  #model index represents gaw location
                if met[counter] == 'MERRA':
                    model, names = modules.readfile_GAW(
                        "", model_index)  #model index represents gaw location
            if res[counter] == '2x2.5':
                if met[counter] == 'GEOS 5':
                    model, names = modules.readfile_GAW(
                        "", model_index)  #model index represents gaw location
                if met[counter] == 'MERRA':
                    model, names = modules.readfile_GAW(
                        "", model_index)  #model index represents gaw location

        if mversion[counter] == 'v90103':
            if res[counter] == '4x5':
                if met[counter] == 'GEOS 5':
                    model, names = modules.readfile_GAW(
Esempio n. 3
0
#Met.
#GEOS 5
#MERRA
met = 'GEOS 5'

#Get variables for location chosen
obsfile, loc_label, model_index = modules.location_check(location)

#set GAW_switch on or off. 'y' = multiple location GAW sim, 'n' = 1 location output
GAW_switch = 'y'

# Read in the model output
if GAW_switch == 'y':
    model, names = modules.readfile_GAW(
        "binary_logs/convectoff_gaw_logs_O3.npy",
        model_index)  #model index represents gaw location
else:
    model, names = modules.readfile(
        "binary_logs/GEOS_v90103_4x5_MERRA_Mace_Head_logs.npy",
        "001")  #001 represents single location

# Processes the model date
date = model[:, 0]
time = model[:, 1]
model_time = modules.date_process(date, time)

#Define sampling intervals
samp_spacing = 1. / 24.

#Convert model time array into numpy array
Esempio n. 4
0
#Calculate Nyquist frequency, Si and Si x 2 for normalisation checks.
#nyquist_freq_lomb_model = frequencies[-1]
#Si_lomb_model = np.mean(fy)*nyquist_freq_lomb_model
#print nyquist_freq_lomb_model, Si_lomb_model, Si_lomb_model*2

model_list = [
    'binary_logs/GEOS_v90103_4x5_GAW_O3_logs.npy',
    'binary_logs/convectoff_gaw_logs_O3.npy',
    'binary_logs/drydepoff_gaw_logs_O3.npy',
    'binary_logs/emissionsoff_gaw_logs_O3.npy',
    'binary_logs/transportoff_gaw_logs_O3.npy'
]

#loop through diff models and get respective obs. data
for i in model_list:
    model, names = modules.readfile_GAW(i, model_index)

    # Processes the model date
    date = model[:, 0]
    time = model[:, 1]

    model_time = modules.date_process(date, time)

    print counter
    print res[counter]
    print met[counter]

    #print date
    #print time
    #Define sampling intervals
    samp_spacing = 1. / 24.