Esempio n. 1
0
    def test_save_model(self):
        """

        :return:
        """
        model = Sequential()
        model.add(Linear(input_size=2, out=24, activation='tanh'))
        model.add(Linear(input_size=24, out=2, activation='tanh'))

        pass
Esempio n. 2
0
    def test_load_model(self):
        """

        :return:
        """
        model = Sequential()
        model.add(Linear(input_size=2, out=24, activation='tanh'))
        model.add(Linear(input_size=24, out=2, activation='tanh'))

        file_name = "model.h5py"
Esempio n. 3
0
    def test_init_not_compatible(self):

        with self.assertRaises(NotCompatibleError):
            model = Sequential([
                Linear(input_size=2, out=22, activation='tanh'),
                Linear(input_size=23, out=22, activation='tanh')
                # second layer's input_size is not compatible with previous layer output_size
            ])
Esempio n. 4
0
def get_categorical_model(input_neurons, output_neurons, layers=None):
    """
    creates a model with Categorical Crossentropy Loss
    :param input_neurons: input neuron number
    :param output_neurons: output neuron number
    :param layers: list of intermediate neuron sizes, default is the number of neurons and layer sizes for neuron
    :return: network with Categorical Crossentropy loss
    """
    if layers is None:
        layers = [25, 25, 25]

    default_act = 'relu'
    model = Sequential()

    idx = 1
    layers.insert(0, input_neurons)
    while idx < len(layers):
        model.add(Linear(out=layers[idx], input_size=layers[idx - 1], activation=default_act))
        idx += 1

    # model.add(Dropout(prob=0.2))
    model.add(Linear(out=output_neurons, activation='softmax'))

    # Set loss function to model: Sequential object
    ce = LossCrossEntropy()
    model.loss = ce
    return model
Esempio n. 5
0
def _read_txt_old(path):
    print('loading plain text model from', path)

    with open(path, 'rb') as f:
        content = f.read().split('\n')

        modules = []
        c = 0
        line = content[c]
        while len(line) > 0:
            if line.startswith(
                    Linear.__name__
            ):  # @UndefinedVariable import error suppression for PyDev users
                lineparts = line.split()
                m = int(lineparts[1])
                n = int(lineparts[2])
                mod = Linear(m, n)
                for i in range(m):
                    c += 1
                    mod.W[i, :] = np.array([
                        float(val) for val in content[c].split()
                        if len(val) > 0
                    ])

                c += 1
                mod.B = np.array([float(val) for val in content[c].split()])
                modules.append(mod)

            elif line.startswith(
                    Rect.__name__
            ):  # @UndefinedVariable import error suppression for PyDev users
                modules.append(Rect())
            elif line.startswith(
                    Tanh.__name__
            ):  # @UndefinedVariable import error suppression for PyDev users
                modules.append(Tanh())
            elif line.startswith(
                    SoftMax.__name__
            ):  # @UndefinedVariable import error suppression for PyDev users
                modules.append(SoftMax())
            elif line.startswith(
                    BinStep.__name__
            ):  # @UndefinedVariable import error suppression for PyDev users
                modules.append(BinStep())
            elif line.startswith(
                    NegAbs.__name__
            ):  # @UndefinedVariable import error suppression for PyDev users
                modules.append(NegAbs())
            else:
                raise ValueError('Layer type ' +
                                 [s for s in line.split() if len(s) > 0][0] +
                                 ' not supported by legacy plain text format.')

            c += 1
            line = content[c]

        return Sequential(modules)
Esempio n. 6
0
    def test_init_not_input_size(self):
        """

        :return:
        """
        with self.assertRaises(InputSizeNotFoundError):
            model = Sequential([
                Linear(out=22, activation='tanh'),  # NO input_size is given
                Linear(input_size=23, out=22, activation='tanh')
            ])
    def _convert_to_nn(self, svm_model, y_train, x_val):
        #convert to linear NN
        print('converting {} model to linear NN'.format(
            self.__class__.__name__))
        W = svm_model.coef_.T
        B = svm_model.intercept_

        if numpy.unique(y_train).size == 2:
            linear_layer = Linear(W.shape[0], 2)
            linear_layer.W = numpy.concatenate([-W, W], axis=1)
            linear_layer.B = numpy.concatenate([-B, B], axis=0)
        else:
            linear_layer = Linear(*(W.shape))
            linear_layer.W = W
            linear_layer.B = B

        svm_model = self.model
        nn_model = Sequential([Flatten(), linear_layer])
        if not self.use_gpu: nn_model.to_numpy()

        #sanity check model conversion
        self._sanity_check_model_conversion(svm_model, nn_model, x_val)
        print('model conversion sanity check passed')
        return nn_model
Esempio n. 8
0
    def _read_txt_helper(path):
        with open(path, 'rb') as f:
            content = f.read().split('\n')

            modules = []
            c = 0
            line = content[c]

            while len(line) > 0:
                if line.startswith(
                        Linear.__name__
                ):  # @UndefinedVariable import error suppression for PyDev users
                    '''
                    Format of linear layer
                    Linear <rows_of_W> <columns_of_W>
                    <flattened weight matrix W>
                    <flattened bias vector>
                    '''
                    _, m, n = line.split()
                    m = int(m)
                    n = int(n)
                    layer = Linear(m, n)
                    layer.W = np.array([
                        float(weightstring)
                        for weightstring in content[c + 1].split()
                        if len(weightstring) > 0
                    ]).reshape((m, n))
                    layer.B = np.array([
                        float(weightstring)
                        for weightstring in content[c + 2].split()
                        if len(weightstring) > 0
                    ])
                    modules.append(layer)
                    c += 3  # the description of a linear layer spans three lines

                elif line.startswith(
                        Convolution.__name__
                ):  # @UndefinedVariable import error suppression for PyDev users
                    '''
                    Format of convolution layer
                    Convolution <rows_of_W> <columns_of_W> <depth_of_W> <number_of_filters_W> <stride_axis_0> <stride_axis_1>
                    <flattened filter block W>
                    <flattened bias vector>
                    '''

                    _, h, w, d, n, s0, s1 = line.split()
                    h = int(h)
                    w = int(w)
                    d = int(d)
                    n = int(n)
                    s0 = int(s0)
                    s1 = int(s1)
                    layer = Convolution(filtersize=(h, w, d, n),
                                        stride=(s0, s1))
                    layer.W = np.array([
                        float(weightstring)
                        for weightstring in content[c + 1].split()
                        if len(weightstring) > 0
                    ]).reshape((h, w, d, n))
                    layer.B = np.array([
                        float(weightstring)
                        for weightstring in content[c + 2].split()
                        if len(weightstring) > 0
                    ])
                    modules.append(layer)
                    c += 3  #the description of a convolution layer spans three lines

                elif line.startswith(
                        SumPool.__name__
                ):  # @UndefinedVariable import error suppression for PyDev users
                    '''
                    Format of sum pooling layer
                    SumPool <mask_heigth> <mask_width> <stride_axis_0> <stride_axis_1>
                    '''

                    _, h, w, s0, s1 = line.split()
                    h = int(h)
                    w = int(w)
                    s0 = int(s0)
                    s1 = int(s1)
                    layer = SumPool(pool=(h, w), stride=(s0, s1))
                    modules.append(layer)
                    c += 1  # one line of parameterized layer description

                elif line.startswith(
                        MaxPool.__name__
                ):  # @UndefinedVariable import error suppression for PyDev users
                    '''
                    Format of max pooling layer
                    MaxPool <mask_heigth> <mask_width> <stride_axis_0> <stride_axis_1>
                    '''

                    _, h, w, s0, s1 = line.split()
                    h = int(h)
                    w = int(w)
                    s0 = int(s0)
                    s1 = int(s1)
                    layer = MaxPool(pool=(h, w), stride=(s0, s1))
                    modules.append(layer)
                    c += 1  # one line of parameterized layer description

                elif line.startswith(
                        Flatten.__name__
                ):  # @UndefinedVariable import error suppression for PyDev users
                    modules.append(Flatten())
                    c += 1  #one line of parameterless layer description
                elif line.startswith(
                        Rect.__name__
                ):  # @UndefinedVariable import error suppression for PyDev users
                    modules.append(Rect())
                    c += 1  #one line of parameterless layer description
                elif line.startswith(
                        Tanh.__name__
                ):  # @UndefinedVariable import error suppression for PyDev users
                    modules.append(Tanh())
                    c += 1  #one line of parameterless layer description
                elif line.startswith(
                        SoftMax.__name__
                ):  # @UndefinedVariable import error suppression for PyDev users
                    modules.append(SoftMax())
                    c += 1  #one line of parameterless layer description
                else:
                    raise ValueError(
                        'Layer type identifier' +
                        [s for s in line.split() if len(s) > 0][0] +
                        ' not supported for reading from plain text file')

                #skip info of previous layers, read in next layer header
                line = content[c]

        return Sequential(modules)
Esempio n. 9
0
    # data = np.load('mnist.npz',)
    with np.load('mnist.npz', 'r', allow_pickle=True) as data:
        X = data['X']
        y = data['y']
else:
    X, y = fetch_openml('mnist_784', version=1, return_X_y=True)
    # X, y = mnist.data / 255.0, mnist.target
    np.savez('mnist.npz', X=X, y=y)

print("data shape:", X.shape, y.shape)

X, Y = X / 255, one_hot(y)
train_x, test_x, train_y, test_y = X[:60000], X[60000:], Y[:60000], Y[60000:]

#### build model
net = Sequential()
net.add(Dense(784, 400))
net.add(ReLU())
# net.add(Sigmoid())
# net.add(SoftPlus())
# net.add(Dropout())
net.add(Dense(400, 128))
net.add(ReLU())
# net.add(BatchMeanSubtraction())
# net.add(ReLU())
# net.add(Dropout())
net.add(Dense(128, 10))
net.add(SoftMax())

# criterion = MultiLabelCriterion()  # loss function
criterion = CrossEntropyCriterion()
Esempio n. 10
0
#  ----- Define the paramters for learning -----
nb_classes = train_labels.shape[0]
features = train_features.size(1)
nb_samples = train_features.size(0)
epsilon = 0.1
eta = .2  #nb_samples is now defined in Sequential()
batch_size = config.batch_size
epochs = int(config.epochs / (nb_samples / batch_size))

# Zeta is to make it work correctly with Sigma activation function.
# train_label = train_label.add(0.125).mul(0.8)
# test_label = test_label.add(0.125).mul(0.8)

# ----- Implementation of the architecture -----
architecture = Sequential(Linear(2, 25, ReLU()), Linear(25, 25, ReLU()),
                          Linear(25, 25, ReLU()), Linear(25, 2, Sigma()))

# ----- Training -----
round = 1
prev_loss = math.inf
prev_prev_loss = math.inf
errors = []
for epoch in range(epochs):
    for batch_start in range(0, nb_samples, batch_size):
        features = train_features[batch_start:batch_start + batch_size, :]
        labels = train_labels[batch_start:batch_start + batch_size]
        tr_loss, tr_error = architecture.forward(train_features, train_labels)
        architecture.backward()
        architecture.update(eta)
        loss, error = architecture.forward(test_features, test_labels)
        print(' --- Epoch ', round, '  Test Loss: ', loss.item(), '---',
Esempio n. 11
0
    def test_Sequential(self):
        np.random.seed(42)
        torch.manual_seed(42)

        batch_size, n_in = 2, 4
        for _ in range(100):
            # layers initialization
            alpha = 0.9
            torch_layer = torch.nn.BatchNorm1d(n_in,
                                               eps=BatchNormalization.EPS,
                                               momentum=1. - alpha,
                                               affine=True)
            torch_layer.bias.data = torch.from_numpy(
                np.random.random(n_in).astype(np.float32))
            custom_layer = Sequential()
            bn_layer = BatchNormalization(alpha)
            bn_layer.moving_mean = torch_layer.running_mean.numpy().copy()
            bn_layer.moving_variance = torch_layer.running_var.numpy().copy()
            custom_layer.add(bn_layer)
            scaling_layer = ChannelwiseScaling(n_in)
            scaling_layer.gamma = torch_layer.weight.data.numpy()
            scaling_layer.beta = torch_layer.bias.data.numpy()
            custom_layer.add(scaling_layer)
            custom_layer.train()

            layer_input = np.random.uniform(-5, 5, (batch_size, n_in)).astype(
                np.float32)
            next_layer_grad = np.random.uniform(
                -5, 5, (batch_size, n_in)).astype(np.float32)

            # 1. check layer output
            custom_layer_output = custom_layer.updateOutput(layer_input)
            layer_input_var = Variable(torch.from_numpy(layer_input),
                                       requires_grad=True)
            torch_layer_output_var = torch_layer(layer_input_var)
            self.assertTrue(
                np.allclose(torch_layer_output_var.data.numpy(),
                            custom_layer_output,
                            atol=1e-6))

            # 2. check layer input grad
            custom_layer_grad = custom_layer.backward(layer_input,
                                                      next_layer_grad)
            torch_layer_output_var.backward(torch.from_numpy(next_layer_grad))
            torch_layer_grad_var = layer_input_var.grad
            self.assertTrue(
                np.allclose(torch_layer_grad_var.data.numpy(),
                            custom_layer_grad,
                            atol=1e-5))

            # 3. check layer parameters grad
            weight_grad, bias_grad = custom_layer.getGradParameters()[1]
            torch_weight_grad = torch_layer.weight.grad.data.numpy()
            torch_bias_grad = torch_layer.bias.grad.data.numpy()
            self.assertTrue(
                np.allclose(torch_weight_grad, weight_grad, atol=1e-6))
            self.assertTrue(np.allclose(torch_bias_grad, bias_grad, atol=1e-6))
Esempio n. 12
0
nn = NN2(X.shape[1], 30, Y.shape[1])
optim_nn = LossMSE()
trainer = Trainer(nn, optim_nn, v=True)
iterations = 200
eta = 0.0001

# In[16]:

cost_nn = trainer.trainBatchGD(X, Y, iterations, eta=eta)
plotCostAndData(nn, X, Y, cost_nn)

# ### Sequential

# In[18]:

nn_seq = Sequential(Linear(D_in, H1), Tanh(), Linear(H1, H2), Tanh(),
                    Linear(H2, D_out))

optim_nn = LossMSE()
trainer = Trainer(nn_seq, optim_nn, v=True)
iterations = 300
eta = 0.0008
nn_seq.modules

# In[19]:

cost_nn_seq = trainer.trainBatchGD(X, Y, iterations, eta=eta)
plotCostAndData(nn_seq, X, Y, cost_nn_seq)

# ## Circular input

# In[248]:
Esempio n. 13
0
###############################
# Use this example to debug your code, start with logistic regression and then
# test other layers. You do not need to change anything here. This code is
# provided for you to test the layers. Next you will use similar code in MNIST task.
###############################

###############################
#### generate_data
X, Y = generate_two_classes(500)
print("Data dimenstions: ", X.shape, Y.shape)
# plt.scatter(X[:,0], X[:,1], c=Y.argmax(axis=-1))
# plt.show()

###############################
#### build model
net = Sequential()
net.add(Dense(2, 4))
net.add(ReLU())
net.add(Dense(4, 2))
net.add(SoftMax())

criterion = MSECriterion()  # loss function

# Optimizer params
optimizer_config = {'learning_rate': 1e-2, 'momentum': 0.9}
optimizer_state = {}

# Looping params
n_epoch = 20
batch_size = 128
Esempio n. 14
0
"""This file declares the models to be used for testing."""

from modules import Sequential, Linear, ReLU, Tanh, Sigmoid

MODEL1 = Sequential("ReLu", Linear(2, 25), ReLU(), Linear(25, 25), ReLU(),
                    Linear(25, 25), ReLU(), Linear(25, 2), Sigmoid())

MODEL2 = Sequential("Tanh", Linear(2, 25), Tanh(), Linear(25, 25), Tanh(),
                    Linear(25, 25), Tanh(), Linear(25, 2), Sigmoid())

MODEL3 = Sequential("ReLu + He", Linear(2, 25, "He"), ReLU(),
                    Linear(25, 25, "He"), ReLU(), Linear(25, 25, "He"), ReLU(),
                    Linear(25, 2, "He"), Sigmoid())

MODEL4 = Sequential("Tanh + Xavier", Linear(2, 25, "Xavier"), Tanh(),
                    Linear(25, 25, "Xavier"), Tanh(), Linear(25, 25, "Xavier"),
                    Tanh(), Linear(25, 2, "Xavier"), Sigmoid())

# Best model is actually almost model 2
MODEL_BEST = Sequential("Best", Linear(2, 25), Tanh(), Linear(25, 25), Tanh(),
                        Linear(25, 25), Tanh(), Linear(25, 2, "He"), Sigmoid())
Esempio n. 15
0
test_errors = []

for n in range(nb_tries):
    print("Try: " + str(n + 1))

    modules = [
        Linear(2, nb_hidden),
        eLU(),
        Linear(nb_hidden, nb_hidden),
        ReLU(),
        Linear(nb_hidden, nb_hidden),
        LeakyReLU(0.01),
        Linear(nb_hidden, 2),
        Tanh()
    ]
    model = Sequential(modules)
    losses, train_errors, validation_errors = train_model(
        model, train_input, train_target, validation_input, validation_target,
        nb_epochs, mini_batch_size, learning_rate, 0, None, 'Adadelta', 'MSE')
    nb_test_errors, test_misclassified = compute_nb_errors(
        model, test_input, test_target, mini_batch_size)
    print('Test error: {:0.2f}% ({:d}/{:d})'.format(
        (100 * nb_test_errors) / test_input.size(0), nb_test_errors,
        test_input.size(0)))
    test_errors.append((100 * nb_test_errors) / test_input.size(0))

    # Plots
    #plot_loss_errors(nb_epochs, losses, train_errors, validation_errors)
    #plot_targets_misclassifications(test_input_not_normalized, test_target, test_misclassified)

# Mean and standard deviation of the model test errors over all the tries
Esempio n. 16
0
###############################
# Use this example to debug your code, start with logistic regression and then
# test other layers. You do not need to change anything here. This code is
# provided for you to test the layers. Next you will use similar code in MNIST task.
###############################

###############################
#### generate_data
X, Y = generate_spirale(500, 3)
print("Data dimenstions: ", X.shape, Y.shape)
plt.scatter(X[:, 0], X[:, 1], c=Y.argmax(axis=-1))
plt.show()

###############################
#### build model
net = Sequential()
net.add(Dense(2, 40))
# net.add(Dropout())
# net.add(BatchMeanSubtraction())
net.add(ReLU())
net.add(Dense(40, 40))
# net.add(Tanh())
net.add(ReLU())
# net.add(Dropout())
net.add(Dense(40, 3))
net.add(SoftMax())

# criterion = MultiLabelCriterion()  # loss function
criterion = CrossEntropyCriterion()
###############################
#### optimizer config
Esempio n. 17
0
    target = torch.zeros((nb, 2))
    target[(input - 0.5).pow(2).sum(1) < 0.5 / pi, 1] = 1
    target[(input - 0.5).pow(2).sum(1) >= 0.5 / pi, 0] = 1
    return input, target


train_input, train_target = generate_disc_set(1000)
test_input, test_target = generate_disc_set(1000)

batch_size = 100
num_batches = len(train_input) // batch_size

# Reset the seeds before each model creation so that
# parameters are initialized the same for a fair comparison.
torch.manual_seed(0)
relu = Sequential(Linear(2, 25), ReLU(), Linear(25, 25), ReLU(),
                  Linear(25, 25), ReLU(), Linear(25, 2))

torch.manual_seed(0)
tanh = Sequential(Linear(2, 25), Tanh(), Linear(25, 25), Tanh(),
                  Linear(25, 25), Tanh(), Linear(25, 2))

criterion = MSE()


def fit(model):
    optimizer = SGD(model.parameters(), model.grads(), lr=0.1)

    losses = []
    print('Epoch | Loss')
    for epoch in range(500):
        epoch_loss = 0
optimizer = adam_optimizer
optimizer_config = {
    'learning_rate': 1e-2,
    'beta1': 9e-1,
    'beta2': 999e-3,
    'epsilon': 10e-8
}

optimizer_state = {}

# Looping params
n_epoch = 20
batch_size = 1024

for activation_name, activation in activations.items():
    nn1 = Sequential()
    nn1.add(Dense(784, 100))
    nn1.add(activation())
    nn1.add(Dense(100, 50))
    nn1.add(activation())
    nn1.add(Dense(50, 10))
    nn1.add(SoftMax())

    print("****************************************************")
    print(f"Training NN with {activation_name} without Batch Normalization")
    print("****************************************************")

    loss_history1 = fit(X_train, y_train, X_val, y_val, nn1, n_epoch,
                        batch_size, criterion, optimizer, optimizer_config,
                        optimizer_state)