def test_small_to_large_transform(self): a = EncodedBond() a.fit([METHANE]) # This is a cheap test to prevent needing all the values here expected_results = numpy.array([ 9.207308e-001, # mean 1.062388e+000, # std 0., # min 5.023670e+000, # max ]) try: m = a.transform([BIG]) assert_close_statistics(m, expected_results) except AssertionError as e: self.fail(e)
def test_large_to_small_transform(self): a = EncodedBond() a.fit([MID]) # This is a cheap test to prevent needing all the values here expected_results = numpy.array([ 0.014224, # mean 0.143824, # std 0., # min 2.392207, # max ]) try: m = a.transform([METHANE]) assert_close_statistics(m, expected_results) except AssertionError as e: self.fail(e)
def test_add_unknown(self): a = EncodedBond(add_unknown=True) a.fit([METHANE]) # This is a cheap test to prevent needing all the values here expected_results = numpy.array([ 0.09105, # mean 0.231761, # std 0., # min 1.869012, # max ]) try: m = a.transform([MID]) self.assertEqual(m.shape, (1, 300)) assert_close_statistics(m, expected_results) except AssertionError as e: self.fail(e)
def test_transform_before_fit(self): a = EncodedBond() with self.assertRaises(ValueError): a.transform(ALL_DATA)