Esempio n. 1
0
    def setUp(self):
        self.r1 = Raster('../../examples/multifact.tif')
        # r1 -> r1 transition
        self.r1r1 = [[
            5,
            5,
            15,
        ], [
            15,
            10,
            5,
        ], [
            0,
            15,
            5,
        ]]

        self.r2 = Raster('../../examples/multifact.tif')
        self.r2.resetMask([0])
        self.r2r2 = [[
            0,
            0,
            8,
        ], [
            8,
            4,
            0,
        ], [
            100,
            8,
            0,
        ]]

        self.r3 = Raster('../../examples/multifact.tif')
        self.r3.resetMask([2])
Esempio n. 2
0
    def sim(self):
        """
        Make 1 iteracion of simulation.
        """
        # TODO: eleminate AreaAnalyst.getChangeMap() from the process

        transition = self.crosstable.getCrosstable()

        prediction = self.getPrediction()
        state = self.getState()
        new_state = state.getBand(1).copy()  # New states (the result of simulation) will be stored there.
        analyst = AreaAnalyst(state, prediction)
        classes = analyst.classes
        changes = analyst.getChangeMap().getBand(1)

        # Make transition between classes according to
        # number of moved pixel in crosstable
        self.rangeChanged.emit(self.tr("Simulation process %p%"), len(classes) ** 2 - len(classes))
        for initClass in classes:
            for finalClass in classes:
                if initClass == finalClass:
                    continue

                # TODO: Calculate number of pixels to be moved via TransitoionMatrix and state raster
                n = transition.getTransition(
                    initClass, finalClass
                )  # Number of pixels to be moved (constant count now).
                # Find n appropriate places for transition initClass -> finalClass
                class_code = analyst.encode(initClass, finalClass)
                places = changes == class_code  # Array of places where transitions initClass -> finalClass are occured
                placesCount = np.sum(places)
                if placesCount < n:
                    self.logMessage.emit(
                        self.tr("There are more transitions in the transition matrix, then the model have found")
                    )
                    n = placesCount

                confidence = self.getConfidence().getBand(1)
                confidence = (
                    confidence * places
                )  # The higher is number in cell, the higer is probability of transition in the cell
                indices = []
                for i in range(n):
                    index = np.unravel_index(
                        confidence.argmax(), confidence.shape
                    )  # Select the cell with biggest probability
                    indices.append(index)
                    confidence[index] = -1  # Mark the cell to prevent second selection

                # Now "indices" contains indices of the appropriate places,
                # make transition initClass -> finalClass
                for index in indices:
                    new_state[index] = finalClass
                self.updateProgress.emit()

        result = Raster()
        result.create([new_state], state.getGeodata())
        self.state = result
        self.updatePrediction(result)
        self.processFinished.emit()
Esempio n. 3
0
    def test_get_state(self):
        smp = Sampler(self.state, self.factors, self.output, ns=0)
        assert_array_equal(smp.get_state(self.state, 1, 1), [0, 0])
        assert_array_equal(smp.get_state(self.state, 0, 0), [0, 1])

        smp = Sampler(self.state, self.factors, self.output, ns=1)
        res = [
            0,
            1,
            0,
            0,
            0,
            1,
            0,
            1,
            0,
            0,
            0,
            1,
            1,
            0,
            0,
            1,
            0,
            0,
        ]
        assert_array_equal(smp.get_state(self.state, 1, 1), res)

        inputRast = Raster('../../examples/sites.tif')
        inputRast.resetMask([0])
        smp = Sampler(inputRast, self.factors, self.output, ns=0)
        assert_array_equal(smp.get_state(self.state, 1, 1), [0])
        assert_array_equal(smp.get_state(self.state, 0, 0), [1])
Esempio n. 4
0
class TestMCE(unittest.TestCase):
    def setUp(self):
        self.factor = Raster('../../examples/multifact.tif')
            #~ [1,1,3]
            #~ [3,2,1]
            #~ [0,3,1]

        self.state  = Raster('../../examples/sites.tif')
        self.state.resetMask(maskVals= [0])
            #~ [1,2,1],
            #~ [1,2,1],
            #~ [0,1,2]
        self.areaAnalyst = AreaAnalyst(self.state, second=None)

    def test_MCE(self):

        data = [
            [1.0,     4.0, 6.0, 7.0],
            [1.0/4,   1.0, 3.0, 4.0],
            [1.0/6, 1.0/3, 1.0, 2.0],
            [1.0/7, 1.0/4, 1.0/2, 1]
        ]
        # Multiband
        factor = Raster('../../examples/two_band.tif')

        mce = MCE([self.factor, factor, self.factor], data, 1, 2, self.areaAnalyst)
        w = mce.getWeights()
        answer = [0.61682294, 0.22382863, 0.09723423, 0.06211421]
        assert_almost_equal(w, answer)

        # One-band
        mce = MCE([self.factor, self.factor, self.factor, self.factor], data, 1, 2, self.areaAnalyst)
        w = mce.getWeights()
        answer = [0.61682294, 0.22382863, 0.09723423, 0.06211421]
        assert_almost_equal(w, answer)

        mask = [
            [False, False, False],
            [False, False, False],
            [False, False, True]
        ]
        p = mce.getPrediction(self.state).getBand(1)
        self.assertEquals(p.dtype, np.uint8)
        answer = [      # The locations where the big numbers are stored must be masked (see mask and self.state)
            [1,   3, 1],
            [1,   3, 1],
            [100, 1, 100]
        ]
        answer = np.ma.array(data = answer, mask = mask)
        assert_almost_equal(p, answer)

        c = mce.getConfidence().getBand(1)
        self.assertEquals(c.dtype, np.uint8)
        answer = [      # The locations where the big numbers are stored must be masked (see mask and self.state)
            [sum((w*100).astype(int))/3,   0,  sum((w*100).astype(int))],
            [sum((w*100).astype(int)),     0,  sum((w*100).astype(int))/3],
            [10000,  sum((w*100).astype(int)),  10000]
        ]
        answer = np.ma.array(data = answer, mask = mask)
        assert_almost_equal(c, answer)
Esempio n. 5
0
    def setUp(self):
        self.r1 = Raster('examples/multifact.tif')
        self.r2 = Raster('examples/sites.tif')
        self.r3 = Raster('examples/two_band.tif')

        # r1
        data1 = np.array(
            [
                [1,1,3],
                [3,2,1],
                [0,3,1]
            ])
        # r2
        data2 = np.array(
            [
                [1,2,1],
                [1,2,1],
                [0,1,2]
            ])
        mask = [
            [False, False, False],
            [False, False, False],
            [False, False, False]
        ]
        self.data1 = ma.array(data=data1, mask=mask)
        self.data2 = ma.array(data=data2, mask=mask)
Esempio n. 6
0
    def _predict(self, state, calcTransitions=False):
        '''
        Predict the changes.
        '''
        try:
            geodata = state.getGeodata()
            rows, cols = geodata['ySize'], geodata['xSize']

            self.transitionPotentials = None    # Reset tr.potentials if they exist

            # Get locations where self.initStateNum is occurs
            band = state.getBand(1)
            initStateMask = binaryzation(band, [self.initStateNum])
            mask = band.mask

            # Calculate summary map of factors weights
            # Transition potentials:
            #   current implementation: potential and confidence are equal (two-class implementation)
            # Confidence:
            #   confidence is summary map of factors scaled to 0-100, if current state = self.initState
            #   confidence is 0, if current state != self.initState
            # Prediction:
            #   predicted value is a constant = areaAnalyst.encode(initStateNum, finalStateNum), if current state = self.initState
            #   predicted value is the transition code current_state -> current_state, if current state != self.initState
            confidence = np.zeros((rows,cols), dtype=np.uint8)
            weights = self.getWeights()
            weightNum = 0               # Number of processed weights
            for f in self.factors:
                if not f.geoDataMatch(state):
                    raise MCEError('Geometries of the state and factor rasters are different!')
                f.normalize(mode = 'maxmin')
                for i in xrange(f.getBandsCount()):
                    band = f.getBand(i+1)
                    confidence = confidence + (band*weights[weightNum]*100).astype(np.uint8)
                    mask = np.ma.mask_or(mask, band.mask)
                    weightNum = weightNum + 1
            confidence = confidence*initStateMask
            prediction = np.copy(state.getBand(1))
            for code in self.areaAnalyst.categories:
                if code != self.initStateNum:
                    prediction[prediction==code] = self.areaAnalyst.encode(code, code)
                else:
                    prediction[prediction==code] = self.areaAnalyst.encode(self.initStateNum, self.finalStateNum)

            predicted_band = np.ma.array(data=prediction, mask=mask, dtype=np.uint8)
            self.prediction = Raster()
            self.prediction.create([predicted_band], geodata)
            confidence_band = np.ma.array(data=confidence, mask=mask, dtype=np.uint8)
            self.confidence = Raster()
            self.confidence.create([confidence_band], geodata)

            code = self.areaAnalyst.encode(self.initStateNum, self.finalStateNum)
            self.transitionPotentials = {code: self.confidence}
        except MemoryError:
            self.errorReport.emit(self.tr("The system out of memory during MCE prediction"))
            raise
        except:
            self.errorReport.emit(self.tr("An unknown error occurs during MCE prediction"))
            raise
Esempio n. 7
0
class TestAreaAnalysisManager(unittest.TestCase):
    def setUp(self):
        self.r1 = Raster('../../examples/multifact.tif')
        # r1 -> r1 transition
        self.r1r1 = [[
            5,
            5,
            15,
        ], [
            15,
            10,
            5,
        ], [
            0,
            15,
            5,
        ]]

        self.r2 = Raster('../../examples/multifact.tif')
        self.r2.resetMask([0])
        self.r2r2 = [[
            0,
            0,
            8,
        ], [
            8,
            4,
            0,
        ], [
            100,
            8,
            0,
        ]]

        self.r3 = Raster('../../examples/multifact.tif')
        self.r3.resetMask([2])

    def test_AreaAnalyst(self):
        aa = AreaAnalyst(self.r1, self.r1)
        raster = aa.getChangeMap()
        band = raster.getBand(1)
        assert_array_equal(band, self.r1r1)

        # Masked raster
        aa = AreaAnalyst(self.r2, self.r2)
        raster = aa.getChangeMap()
        band = raster.getBand(1)
        assert_array_equal(band, self.r2r2)

    def test_encode(self):
        aa = AreaAnalyst(self.r1, self.r1)
        self.assertEqual(aa.categories, [0, 1, 2, 3])
        self.assertEqual(aa.encode(1, 2), 6)
        for initClass in range(4):
            for finalClass in range(4):
                k = aa.encode(initClass, finalClass)
                self.assertEqual(aa.decode(k), (initClass, finalClass))
        self.assertEqual(aa.finalCodes(0), [0, 1, 2, 3])
        self.assertEqual(aa.finalCodes(1), [4, 5, 6, 7])
Esempio n. 8
0
    def setUp(self):
        self.reference = Raster('../../examples/data.tif')
        #~ [1,1,1,1],
        #~ [1,1,2,2],
        #~ [2,2,2,2],
        #~ [3,3,3,3]

        self.simulated = Raster('../../examples/data1.tif')
Esempio n. 9
0
class TestSimulator(unittest.TestCase):
    def setUp(self):

        # Raster1:
        # ~ [1, 1, 3,],
        # ~ [3, 2, 1,],
        # ~ [0, 3, 1,]
        self.raster1 = Raster("../../examples/multifact.tif")
        self.raster1.resetMask([0])

        self.X = np.array([[1, 2, 3], [3, 2, 1], [0, 1, 1]])
        self.X = np.ma.array(self.X, mask=(self.X == 0))
        self.raster2 = Raster()
        self.raster2.create([self.X], self.raster1.getGeodata())

        self.aa = AreaAnalyst(self.raster1, self.raster2)

        self.crosstab = CrossTableManager(self.raster1, self.raster2)

        # Simple model
        self.model = Model(state=self.raster1)

    def test_compute_table(self):

        # print self.crosstab.getCrosstable().getCrosstable()
        # CrossTab:
        #  [[ 3.  1.  0.]
        #   [ 0.  1.  0.]
        #   [ 1.  0.  2.]]
        prediction = self.model.getPrediction(self.raster1)
        # print prediction.getBand(1)
        # prediction = [[1.0 1.0 6.0]
        #  [6.0 5.0 1.0]
        #  [-- 6.0 1.0]]
        # confidence = self.model.getConfidence()
        # print confidence.getBand(1)
        # confidence =     [[1.0 0.5  0.33]
        #  [0.5 0.33 0.25]
        #  [--  0.25 0.2]]
        result = np.array([[2.0, 1.0, 3.0], [1.0, 2.0, 1.0], [0, 3.0, 1.0]])
        result = np.ma.array(result, mask=(result == 0))

        simulator = Simulator(
            state=self.raster1, factors=None, model=self.model, crosstable=self.crosstab
        )  # The model does't use factors
        simulator.setIterationCount(1)
        simulator.simN()
        state = simulator.getState().getBand(1)
        assert_array_equal(result, state)

        result = np.array([[2.0, 1.0, 1.0], [2.0, 2.0, 1.0], [0, 3.0, 1.0]])
        result = np.ma.array(result, mask=(result == 0))

        simulator = Simulator(self.raster1, None, self.model, self.crosstab)
        simulator.setIterationCount(2)
        simulator.simN()
        state = simulator.getState().getBand(1)
        assert_array_equal(result, state)
Esempio n. 10
0
def main(initRaster, finalRaster, factors):
    print 'Start Reading Init Data...', clock()
    initRaster = Raster(initRaster)
    finalRaster = Raster(finalRaster)
    factors = [Raster(rasterName) for rasterName in factors]
    print 'Finish Reading Init Data', clock(), '\n'

    print "Start Making CrossTable...", clock()
    crosstab = CrossTableManager(initRaster, finalRaster)
    print "Finish Making CrossTable", clock(), '\n'

    # Create and Train LR Model
    model = LR(ns=1)
    print 'Start Setting LR Trainig Data...', clock()
    model.setTrainingData(initRaster,
                          factors,
                          finalRaster,
                          mode='Stratified',
                          samples=1000)
    print 'Finish Setting Trainig Data', clock(), '\n'
    print 'Start LR Training...', clock()
    model.train()
    print 'Finish Trainig', clock(), '\n'

    print 'Start LR Prediction...', clock()
    predict = model.getPrediction(initRaster, factors)
    filename = 'lr_predict.tiff'
    try:
        predict.save(filename)
    finally:
        os.remove(filename)
    print 'Finish LR Prediction...', clock(), '\n'

    # simulation
    print 'Start Simulation...', clock()
    simulator = Simulator(initRaster, factors, model, crosstab)
    # Make 1 cycle of simulation:
    simulator.simN(1)
    monteCarloSim = simulator.getState()  # Result of MonteCarlo simulation
    errors = simulator.errorMap(finalRaster)  # Risk class validation
    riskFunct = simulator.getConfidence()  # Risk function

    # Make K cycles of simulation:
    # simulator.simN(K)

    try:
        monteCarloSim.save('simulation_result.tiff')
        errors.save('risk_validation.tiff')
        riskFunct.save('risk_func.tiff')
    finally:
        pass
        os.remove('simulation_result.tiff')
        os.remove('risk_validation.tiff')
        os.remove('risk_func.tiff')
    print 'Finish Simulation', clock(), '\n'

    print 'Done', clock()
Esempio n. 11
0
    def _predict(self, state, calcTransitions=False):
        """
        Predict the changes.
        """
        try:
            self.rangeChanged.emit(self.tr("Initialize model %p%"), 1)

            rows, cols = self.geodata["ySize"], self.geodata["xSize"]
            if not self.changeMap.geoDataMatch(state):
                raise WoeManagerError("Geometries of the state and changeMap rasters are different!")

            prediction = np.zeros((rows, cols), dtype=np.uint8)
            confidence = np.zeros((rows, cols), dtype=np.uint8)
            mask = np.zeros((rows, cols), dtype=np.byte)

            stateBand = state.getBand(1)

            self.updateProgress.emit()
            self.rangeChanged.emit(self.tr("Prediction %p%"), rows)

            for r in xrange(rows):
                for c in xrange(cols):
                    oldMax, currMax = -1000, -1000  # Small numbers
                    indexMax = -1  # Index of Max weight
                    initCat = stateBand[r, c]  # Init category (state before transition)
                    try:
                        codes = self.analyst.codes(initCat)  # Possible final states
                        for code in codes:
                            try:  # If not all possible transitions are presented in the changeMap
                                map = self.woe[code]  # Get WoE map of transition 'code'
                            except KeyError:
                                continue
                            w = map[r, c]  # The weight in the (r,c)-pixel
                            if w > currMax:
                                indexMax, oldMax, currMax = code, currMax, w
                        prediction[r, c] = indexMax
                        confidence[r, c] = int(100 * (sigmoid(currMax) - sigmoid(oldMax)))
                    except ValueError:
                        mask[r, c] = 1
                self.updateProgress.emit()

            predicted_band = np.ma.array(data=prediction, mask=mask, dtype=np.uint8)
            self.prediction = Raster()
            self.prediction.create([predicted_band], self.geodata)
            confidence_band = np.ma.array(data=confidence, mask=mask, dtype=np.uint8)
            self.confidence = Raster()
            self.confidence.create([confidence_band], self.geodata)
        except MemoryError:
            self.errorReport.emit(self.tr("The system out of memory during WOE prediction"))
            raise
        except:
            self.errorReport.emit(self.tr("An unknown error occurs during WoE prediction"))
            raise
        finally:
            self.processFinished.emit()
Esempio n. 12
0
    def _predict(self, state, calcTransitions=False):
        '''
        Predict the changes.
        '''
        try:
            self.rangeChanged.emit(self.tr("Initialize model %p%"), 1)

            rows, cols = self.geodata['ySize'], self.geodata['xSize']
            if not self.changeMap.geoDataMatch(state):
                raise WoeManagerError('Geometries of the state and changeMap rasters are different!')

            prediction = np.zeros((rows,cols), dtype=np.uint8)
            confidence = np.zeros((rows,cols), dtype=np.uint8)
            mask = np.zeros((rows,cols), dtype=np.byte)

            stateBand = state.getBand(1)

            self.updateProgress.emit()
            self.rangeChanged.emit(self.tr("Prediction %p%"), rows)

            for r in xrange(rows):
                for c in xrange(cols):
                    oldMax, currMax = -1000, -1000  # Small numbers
                    indexMax = -1                   # Index of Max weight
                    initCat = stateBand[r,c]        # Init category (state before transition)
                    try:
                        codes = self.analyst.codes(initCat)   # Possible final states
                        for code in codes:
                            try: # If not all possible transitions are presented in the changeMap
                                map = self.woe[code]     # Get WoE map of transition 'code'
                            except KeyError:
                                continue
                            w = map[r,c]        # The weight in the (r,c)-pixel
                            if w > currMax:
                                indexMax, oldMax, currMax = code, currMax, w
                        prediction[r,c] = indexMax
                        confidence[r,c] = int(100*(sigmoid(currMax) - sigmoid(oldMax)))
                    except ValueError:
                        mask[r,c] = 1
                self.updateProgress.emit()

            predicted_band = np.ma.array(data=prediction, mask=mask, dtype=np.uint8)
            self.prediction = Raster()
            self.prediction.create([predicted_band], self.geodata)
            confidence_band = np.ma.array(data=confidence, mask=mask, dtype=np.uint8)
            self.confidence = Raster()
            self.confidence.create([confidence_band], self.geodata)
        except MemoryError:
            self.errorReport.emit(self.tr("The system out of memory during WOE prediction"))
            raise
        except:
            self.errorReport.emit(self.tr("An unknown error occurs during WoE prediction"))
            raise
        finally:
            self.processFinished.emit()
Esempio n. 13
0
class TestMCE(unittest.TestCase):
    def setUp(self):
        self.factor = Raster('../../examples/multifact.tif')
        #~ [1,1,3]
        #~ [3,2,1]
        #~ [0,3,1]

        self.state = Raster('../../examples/sites.tif')
        self.state.resetMask(maskVals=[0])
        #~ [1,2,1],
        #~ [1,2,1],
        #~ [0,1,2]
        self.areaAnalyst = AreaAnalyst(self.state, second=None)

    def test_MCE(self):

        data = [[1.0, 4.0, 6.0, 7.0], [1.0 / 4, 1.0, 3.0, 4.0],
                [1.0 / 6, 1.0 / 3, 1.0, 2.0], [1.0 / 7, 1.0 / 4, 1.0 / 2, 1]]
        # Multiband
        factor = Raster('../../examples/two_band.tif')

        mce = MCE([self.factor, factor, self.factor], data, 1, 2,
                  self.areaAnalyst)
        w = mce.getWeights()
        answer = [0.61682294, 0.22382863, 0.09723423, 0.06211421]
        assert_almost_equal(w, answer)

        # One-band
        mce = MCE([self.factor, self.factor, self.factor, self.factor], data,
                  1, 2, self.areaAnalyst)
        w = mce.getWeights()
        answer = [0.61682294, 0.22382863, 0.09723423, 0.06211421]
        assert_almost_equal(w, answer)

        mask = [[False, False, False], [False, False, False],
                [False, False, True]]
        p = mce.getPrediction(self.state).getBand(1)
        self.assertEquals(p.dtype, np.uint8)
        answer = [  # The locations where the big numbers are stored must be masked (see mask and self.state)
            [1, 3, 1], [1, 3, 1], [100, 1, 100]
        ]
        answer = np.ma.array(data=answer, mask=mask)
        assert_almost_equal(p, answer)

        c = mce.getConfidence().getBand(1)
        self.assertEquals(c.dtype, np.uint8)
        answer = [  # The locations where the big numbers are stored must be masked (see mask and self.state)
            [sum((w * 100).astype(int)) / 3, 0,
             sum((w * 100).astype(int))],
            [sum((w * 100).astype(int)), 0,
             sum((w * 100).astype(int)) / 3],
            [10000, sum((w * 100).astype(int)), 10000]
        ]
        answer = np.ma.array(data=answer, mask=mask)
        assert_almost_equal(c, answer)
Esempio n. 14
0
    def test_cat2vect(self):
        smp = Sampler(self.state, self.factors, self.output, ns=0)
        assert_array_equal(smp.cat2vect(0), [1, 0])
        assert_array_equal(smp.cat2vect(1), [0, 1])
        assert_array_equal(smp.cat2vect(2), [0, 0])

        inputRast = Raster('../../examples/sites.tif')
        inputRast.resetMask([0])
        smp = Sampler(inputRast, self.factors, self.output, ns=0)
        assert_array_equal(smp.cat2vect(1), [1])
        assert_array_equal(smp.cat2vect(2), [0])
Esempio n. 15
0
 def test_save(self):
     try:
         filename = 'temp.tiff'
         self.r1.save(filename)
         r2 = Raster(filename)
         self.assertEqual(r2.get_dtype(), self.r1.get_dtype())
         self.assertEqual(r2.getBandsCount(), self.r1.getBandsCount())
         for i in range(r2.getBandsCount()):
             assert_array_equal(r2.getBand(i+1), self.r1.getBand(i+1))
     finally:
         os.remove(filename)
Esempio n. 16
0
    def test_cat2vect(self):
        smp = Sampler(self.state, self.factors,  self.output, ns=0)
        assert_array_equal(smp.cat2vect(0), [1, 0])
        assert_array_equal(smp.cat2vect(1), [0, 1])
        assert_array_equal(smp.cat2vect(2), [0, 0])

        inputRast = Raster('../../examples/sites.tif')
        inputRast.resetMask([0])
        smp = Sampler(inputRast, self.factors,  self.output, ns=0)
        assert_array_equal(smp.cat2vect(1), [1])
        assert_array_equal(smp.cat2vect(2), [0])
Esempio n. 17
0
    def train(self):
        """
        Train the model
        """
        self.transitionPotentials = {}
        try:
            iterCount = len(self.codes) * len(self.factors)
            self.rangeChanged.emit(self.tr("Training WoE... %p%"), iterCount)
            changeMap = self.changeMap.getBand(1)
            for code in self.codes:
                sites = binaryzation(changeMap, [code])
                # Reclass factors (continuous factor -> ordinal factor)
                wMap = np.ma.zeros(changeMap.shape)  # The map of summary weight of the all factors
                self.weights[code] = {}  # Dictionary for storing wheights of every raster's band
                for k in xrange(len(self.factors)):
                    fact = self.factors[k]
                    self.weights[code][k] = {}  # Weights of the factor
                    factorW = self.weights[code][k]
                    if self.bins:  # Get bins of the factor
                        bin = self.bins[k]
                        if (bin != None) and fact.getBandsCount() != len(bin):
                            raise WoeManagerError("Count of bins list for multiband factor is't equal to band count!")
                    else:
                        bin = None
                    for i in range(1, fact.getBandsCount() + 1):
                        band = fact.getBand(i)
                        if bin and bin[i - 1]:  #
                            band = reclass(band, bin[i - 1])
                        band, sites = masks_identity(band, sites, dtype=np.uint8)  # Combine masks of the rasters
                        woeRes = woe(
                            band, sites, self.unit_cell
                        )  # WoE for the 'code' (initState->finalState) transition and current 'factor'.
                        weights = woeRes["map"]
                        wMap = wMap + weights
                        factorW[i] = woeRes["weights"]
                    self.updateProgress.emit()

                # Reclassification finished => set WoE coefficients
                self.woe[code] = wMap  # WoE for all factors and the transition code.

                # Potentials are WoE map rescaled to 0--100 percents
                band = (sigmoid(wMap) * 100).astype(np.uint8)
                p = Raster()
                p.create([band], self.geodata)
                self.transitionPotentials[code] = p
                gc.collect()
        except MemoryError:
            self.errorReport.emit("The system out of memory during WoE trainig")
            raise
        except:
            self.errorReport.emit(self.tr("An unknown error occurs during WoE trainig"))
            raise
        finally:
            self.processFinished.emit()
Esempio n. 18
0
    def setUp(self):
        self.factor = Raster('../../examples/multifact.tif')
        #~ [1,1,3]
        #~ [3,2,1]
        #~ [0,3,1]

        self.sites = Raster('../../examples/sites.tif')
        #~ [1,2,1],
        #~ [1,2,1],
        #~ [0,1,2]
        self.sites.resetMask(maskVals=[0])

        self.mask = [[
            False,
            False,
            False,
        ], [
            False,
            False,
            False,
        ], [
            True,
            False,
            False,
        ]]
        fact = [[
            1,
            1,
            3,
        ], [
            3,
            2,
            1,
        ], [
            0,
            3,
            1,
        ]]
        site = [[
            False,
            True,
            False,
        ], [
            False,
            True,
            False,
        ], [
            False,
            False,
            True,
        ]]
        self.factraster = ma.array(data=fact, mask=self.mask, dtype=np.int)
        self.sitesraster = ma.array(data=site, mask=self.mask, dtype=np.bool)
Esempio n. 19
0
    def setUp(self):
        self.factor = Raster('../../examples/multifact.tif')
        #~ [1,1,3]
        #~ [3,2,1]
        #~ [0,3,1]

        self.state = Raster('../../examples/sites.tif')
        self.state.resetMask(maskVals=[0])
        #~ [1,2,1],
        #~ [1,2,1],
        #~ [0,1,2]
        self.areaAnalyst = AreaAnalyst(self.state, second=None)
Esempio n. 20
0
 def errorMap(self, answer):
     '''
     Create map of correct and incorrect prediction.
     This function compares the known answer and the result of predicting procedure,
     correct pixel is marked as 0.
     '''
     state = self.getState()
     b = state.getBand(1)
     a = answer.getBand(1)
     diff = (a - b).astype(np.int16)
     result = Raster()
     result.create([diff], state.getGeodata())
     return result
Esempio n. 21
0
 def errorMap(self, answer):
     '''
     Create map of correct and incorrect prediction.
     This function compares the known answer and the result of predicting procedure,
     correct pixel is marked as 0.
     '''
     state = self.getState()
     b = state.getBand(1)
     a = answer.getBand(1)
     diff = (a-b).astype(np.int16)
     result = Raster()
     result.create([diff], state.getGeodata())
     return result
Esempio n. 22
0
    def train(self):
        '''
        Train the model
        '''
        self.transitionPotentials = {}
        try:
            iterCount = len(self.codes)*len(self.factors)
            self.rangeChanged.emit(self.tr("Training WoE... %p%"), iterCount)
            changeMap = self.changeMap.getBand(1)
            for code in self.codes:
                sites = binaryzation(changeMap, [code])
                # Reclass factors (continuous factor -> ordinal factor)
                wMap = np.ma.zeros(changeMap.shape) # The map of summary weight of the all factors
                self.weights[code] = {}             # Dictionary for storing wheights of every raster's band
                for k in xrange(len(self.factors)):
                    fact = self.factors[k]
                    self.weights[code][k] = {}      # Weights of the factor
                    factorW = self.weights[code][k]
                    if self.bins: # Get bins of the factor
                        bin = self.bins[k]
                        if (bin != None) and fact.getBandsCount() != len(bin):
                            raise WoeManagerError("Count of bins list for multiband factor is't equal to band count!")
                    else: bin = None
                    for i in range(1, fact.getBandsCount()+1):
                        band = fact.getBand(i)
                        if bin and bin[i-1]: #
                            band = reclass(band, bin[i-1])
                        band, sites = masks_identity(band, sites, dtype=np.uint8)   # Combine masks of the rasters
                        woeRes = woe(band, sites, self.unit_cell)   # WoE for the 'code' (initState->finalState) transition and current 'factor'.
                        weights = woeRes['map']
                        wMap = wMap + weights
                        factorW[i] = woeRes['weights']
                    self.updateProgress.emit()

                # Reclassification finished => set WoE coefficients
                self.woe[code]=wMap             # WoE for all factors and the transition code.

                # Potentials are WoE map rescaled to 0--100 percents
                band = (sigmoid(wMap)*100).astype(np.uint8)
                p = Raster()
                p.create([band], self.geodata)
                self.transitionPotentials[code] = p
                gc.collect()
        except MemoryError:
            self.errorReport.emit('The system out of memory during WoE trainig')
            raise
        except:
            self.errorReport.emit(self.tr("An unknown error occurs during WoE trainig"))
            raise
        finally:
            self.processFinished.emit()
Esempio n. 23
0
    def test_getStat(self):
        reference = Raster('../../examples/data.tif')
        simulated = Raster('../../examples/data1.tif')
        reference.resetMask([2])
        simulated.resetMask([2])

        eb = EBudget(reference, simulated)
        stat = eb.getStat(nIter=3)
        ans0 = {
            'NoNo': 0.5,
            'NoMed': (5.0 * 5 / 8 + 3.0 * 3 / 8) / 8,
            'MedMed': 4.0 / 8,
            'MedPer': 1.0,
            'PerPer': 1.0
        }
        for k in stat[0].keys():
            np.testing.assert_almost_equal(stat[0][k], ans0[k])
        ans1 = {
            'NoNo': 0.5,
            'NoMed': (5.0 / 8 + 5.0 / 32 + 3.0 / 16 + 3.0 / 32) / 2,
            'MedMed': 4.0 / 8,
            'MedPer': 1.0,
            'PerPer': 1.0
        }
        for k in stat[1].keys():
            np.testing.assert_almost_equal(stat[0][k], ans1[k])
Esempio n. 24
0
    def test_Mask(self):
        reference = Raster('../../examples/data.tif')
        simulated = Raster('../../examples/data1.tif')
        reference.resetMask([2])
        simulated.resetMask([2])

        eb = EBudget(reference, simulated)
        W = eb.W

        S1 = weightedSum(eb.Sj[1], W)
        S3 = weightedSum(eb.Sj[3], W)
        np.testing.assert_almost_equal(S1, 5.0 / 8)
        np.testing.assert_almost_equal(S3, 3.0 / 8)

        noNo = eb.NoNo()
        np.testing.assert_almost_equal(noNo, 0.5)

        noM = eb.NoMed()
        np.testing.assert_almost_equal(noM, (5.0 * 5 / 8 + 3.0 * 3 / 8) / 8)

        medM = eb.MedMed()
        np.testing.assert_almost_equal(medM, 4.0 / 8)

        medP = eb.MedPer()
        np.testing.assert_almost_equal(medP, 1.0)
Esempio n. 25
0
    def setUp(self):
        self.factors = [Raster('../../examples/multifact.tif')]
        self.output = Raster('../../examples/sites.tif')
        #~ sites.tif is 1-band 3x3 raster:
            #~ [1,2,1],
            #~ [1,2,1],
            #~ [0,1,2]

        self.factors2 = [Raster('../../examples/multifact.tif'), Raster('../../examples/multifact.tif')]
        self.factors3 = [Raster('../../examples/two_band.tif')]
        self.factors4 = [Raster('../../examples/two_band.tif'), Raster('../../examples/multifact.tif')]

        self.output1  = Raster('../../examples/data.tif')
        self.state1   = self.output1
        self.factors1 = [Raster('../../examples/fact16.tif')]
Esempio n. 26
0
    def setUp(self):
        self.factor = Raster('../../examples/multifact.tif')
                #~ [1,1,3]
                #~ [3,2,1]
                #~ [0,3,1]

        self.sites  = Raster('../../examples/sites.tif')
                    #~ [1,2,1],
                    #~ [1,2,1],
                    #~ [0,1,2]
        self.sites.resetMask(maskVals= [0])

        self.mask = [
            [False, False, False,],
            [False, False, False,],
            [True,  False, False,]
        ]
        fact = [
            [1, 1, 3,],
            [3, 2, 1,],
            [0, 3, 1,]
        ]
        site = [
            [False, True,  False,],
            [False, True,  False,],
            [False, False, True,]
        ]
        self.factraster  = ma.array(data = fact, mask=self.mask, dtype=np.int)
        self.sitesraster = ma.array(data = site, mask=self.mask, dtype=np.bool)
Esempio n. 27
0
    def test_roundBands(self):
        rast = Raster('examples/multifact.tif')
        rast.bands = rast.bands * 0.1
        rast.roundBands()
        answer = [[[
            0,
            0,
            0,
        ], [0, 0, 0], [0, 0, 0]]]
        assert_array_equal(answer, rast.bands)

        rast = Raster('examples/multifact.tif')
        rast.bands = rast.bands * 1.1
        rast.roundBands(decimals=1)
        answer = np.array([[[1.1, 1.1, 3.3], [3.3, 2.2, 1.1], [0.0, 3.3,
                                                               1.1]]])
        assert_array_equal(answer, rast.bands)
Esempio n. 28
0
 def makeChangeMap(self):
     f, s = self.first, self.second
     rows, cols = self.geodata['ySize'], self.geodata['xSize']
     band = np.zeros([rows, cols])
     self.rangeChanged.emit(self.tr("Creating change map %p%"), rows)
     for i in xrange(rows):
         for j in xrange(cols):
             if not f.mask[i,j]:
                 r = f[i,j]
                 c = s[i,j]
                 band[i, j] = self.encode(r, c)
         self.updateProgress.emit()
     bands = [np.ma.array(data = band, mask = f.mask)]
     raster = Raster()
     raster.create(bands, self.geodata)
     self.processFinished.emit(raster)
     self.changeMap = raster
Esempio n. 29
0
    def test_get_state(self):
        smp = Sampler(self.state, self.factors,  self.output, ns=0)
        assert_array_equal(smp.get_state(self.state, 1,1), [0, 0])
        assert_array_equal(smp.get_state(self.state, 0,0), [0, 1])

        smp = Sampler(self.state, self.factors,  self.output, ns=1)
        res = [ 0, 1, 0, 0, 0, 1,
                0, 1, 0, 0, 0, 1,
                1, 0, 0, 1, 0, 0,
            ]
        assert_array_equal(smp.get_state(self.state, 1,1), res)

        inputRast = Raster('../../examples/sites.tif')
        inputRast.resetMask([0])
        smp = Sampler(inputRast, self.factors,  self.output, ns=0)
        assert_array_equal(smp.get_state(self.state, 1,1), [0])
        assert_array_equal(smp.get_state(self.state, 0,0), [1])
Esempio n. 30
0
class TestLRManager (unittest.TestCase):
    def setUp(self):
        self.output  = Raster('../../examples/multifact.tif')
            #~ [1,1,3]
            #~ [3,2,1]
            #~ [0,3,1]
        self.output.resetMask([0])
        self.state   = self.output
        self.factors = [Raster('../../examples/sites.tif'), Raster('../../examples/sites.tif')]
            #~ [1,2,1],
            #~ [1,2,1],
            #~ [0,1,2]


        self.output1  = Raster('../../examples/data.tif')
        self.state1   = self.output1
        self.factors1 = [Raster('../../examples/fact16.tif')]

    def test_LR(self):
        data = [
            [3.0, 1.0, 3.0],
            [3.0, 1.0, 3.0],
            [0,   3.0, 1.0]
        ]
        result = np.ma.array(data = data, mask = (data==0))

        lr = LR(ns=0)   # 3-class problem
        lr.setTrainingData(self.state, self.factors, self.output)
        lr.train()
        predict = lr.getPrediction(self.state, self.factors)
        predict = predict.getBand(1)
        assert_array_equal(predict, result)

        lr = LR(ns=1) # Two-class problem (it's because of boundary effect)
        lr.setTrainingData(self.state1, self.factors1, self.output1)
        lr.train()
        predict = lr.getPrediction(self.state1, self.factors1)
        predict = predict.getBand(1)
        data = [
            [0.0, 0.0, 0.0, 0.0],
            [0.0, 1.0, 2.0, 0.0],
            [0.0, 2.0, 2.0, 0.0],
            [0.0, 0.0, 0.0, 0.0],
        ]
        result = np.ma.array(data = data, mask = (data==0))
        assert_array_equal(predict, result)
Esempio n. 31
0
    def setUp(self):
        self.factor = Raster('../../examples/multifact.tif')
            #~ [1,1,3]
            #~ [3,2,1]
            #~ [0,3,1]

        self.state  = Raster('../../examples/sites.tif')
        self.state.resetMask(maskVals= [0])
Esempio n. 32
0
 def setUp(self):
     self.r1 = Raster('../../examples/multifact.tif')
     # r1 -> r1 transition
     self.r1r1 = [
         [5,  5,  15,],
         [15, 10, 5, ],
         [0,  15, 5, ]
     ]
     
     self.r2  = Raster('../../examples/multifact.tif')
     self.r2.resetMask([0])
     self.r2r2 = [
         [0,   0, 8,],
         [8,   4, 0,],
         [100, 8, 0,]
     ]
     
     self.r3 = Raster('../../examples/multifact.tif')
     self.r3.resetMask([2])
Esempio n. 33
0
    def _predict(self, state, factors):
        '''
        Calculate output and confidence rasters using MLP model and input rasters
        @param state            Raster of the current state (classes) values.
        @param factors          List of the factor rasters (predicting variables).
        '''
        geodata = state.getGeodata()
        rows, cols = geodata['ySize'], geodata['xSize']
        for r in factors:
            if not state.geoDataMatch(r):
                raise MlpManagerError('Geometries of the input rasters are different!')

        # Normalize factors before prediction:
        for f in factors:
            f.normalize(mode = 'mean')

        predicted_band  = np.zeros([rows, cols])
        confidence_band = np.zeros([rows, cols])

        sampler = Sampler(state, factors, ns=self.ns)
        mask = state.getBand(1).mask.copy()
        for i in xrange(rows):
            for j in xrange(cols):
                if not mask[i,j]:
                    input = sampler.get_inputs(state, factors, i,j)
                    if input != None:
                        out = self.getOutput(input)
                        # Get index of the biggest output value as the result
                        biggest = max(out)
                        res = list(out).index(biggest)
                        predicted_band[i, j] = self.classlist[res]

                        confidence = self.outputConfidence(out)
                        confidence_band[i, j] = confidence
                    else: # Input sample is incomplete => mask this pixel
                        mask[i, j] = True
        predicted_bands  = [np.ma.array(data = predicted_band, mask = mask)]
        confidence_bands = [np.ma.array(data = confidence_band, mask = mask)]

        self.prediction = Raster()
        self.prediction.create(predicted_bands, geodata)
        self.confidence = Raster()
        self.confidence.create(confidence_bands, geodata)
Esempio n. 34
0
    def _predict(self, state):
        '''
        Predict the changes.
        '''
        geodata = self.changeMap.getGeodata()
        rows, cols = geodata['ySize'], geodata['xSize']
        if not self.changeMap.geoDataMatch(state):
            raise WoeManagerError('Geometries of the state and changeMap rasters are different!')

        prediction = np.zeros((rows,cols))
        confidence = np.zeros((rows,cols))
        mask = np.zeros((rows,cols))

        woe = self.getWoe()
        stateBand = state.getBand(1)

        for r in xrange(rows):
            for c in xrange(cols):
                oldMax, currMax = -1000, -1000  # Small numbers
                indexMax = -1                   # Index of Max weight
                initClass = stateBand[r,c]      # Init class (state before transition)
                try:
                    codes = self.analyst.codes(initClass)   # Possible final states
                    for code in codes:
                        try: # If not all possible transitions are presented in the changeMap
                            map = woe[code]     # Get WoE map of transition 'code'
                        except KeyError:
                            continue
                        w = map[r,c]        # The weight in the (r,c)-pixel
                        if w > currMax:
                            indexMax, oldMax, currMax = code, currMax, w
                    decode = self.analyst.decode(indexMax)    # Get init & final classes (initState, finalState)
                    prediction[r,c] = decode[1]               # final class
                    confidence[r,c] = sigmoid(currMax) - sigmoid(oldMax)
                except ValueError:
                    mask[r,c] = 1

        predicted_band = np.ma.array(data=prediction, mask=mask)
        self.prediction = Raster()
        self.prediction.create([predicted_band], geodata)
        confidence_band = np.ma.array(data=confidence, mask=mask)
        self.confidence = Raster()
        self.confidence.create([confidence_band], geodata)
Esempio n. 35
0
class TestAreaAnalysisManager (unittest.TestCase):
    def setUp(self):
        self.r1 = Raster('../../examples/multifact.tif')
        # r1 -> r1 transition
        self.r1r1 = [
            [5,  5,  15,],
            [15, 10, 5, ],
            [0,  15, 5, ]
        ]
        
        self.r2  = Raster('../../examples/multifact.tif')
        self.r2.resetMask([0])
        self.r2r2 = [
            [0,   0, 8,],
            [8,   4, 0,],
            [100, 8, 0,]
        ]
        
        self.r3 = Raster('../../examples/multifact.tif')
        self.r3.resetMask([2])
        
    def test_AreaAnalyst(self):
        aa = AreaAnalyst(self.r1, self.r1)
        raster = aa.getChangeMap()
        band = raster.getBand(1)
        assert_array_equal(band, self.r1r1)
        
        # Masked raster
        aa = AreaAnalyst(self.r2, self.r2)
        raster = aa.getChangeMap()  
        band = raster.getBand(1)
        assert_array_equal(band, self.r2r2)
    
    def test_encode(self):
        aa = AreaAnalyst(self.r1, self.r1)
        self.assertEqual(aa.classes, [0,1,2,3])
        self.assertEqual(aa.encode(1,2), 6)
        for initClass in range(4):
            for finalClass in range(4):
                k = aa.encode(initClass, finalClass)
                self.assertEqual(aa.decode(k), (initClass, finalClass))
        self.assertEqual(aa.finalCodes(0), [0,1,2,3])
        self.assertEqual(aa.finalCodes(1), [4,5,6,7])
Esempio n. 36
0
    def _predict(self, state):
        '''
        Predict the changes.
        '''
        geodata = state.getGeodata()
        rows, cols = geodata['ySize'], geodata['xSize']

        # Get locations where self.initStateNum is occurs
        band = state.getBand(1)
        initStateMask = binaryzation(band, [self.initStateNum])
        mask = band.mask

        # Calculate summary map of factors weights
        # Confidence:
        #   confidence is summary map of factors, if current state = self.initState
        #   confidence is 0, if current state != self.initState
        # Prediction:
        #   predicted value is a constant = self.finalStateNum, if current state = self.initState
        #   predicted value is current state, if current state != self.initState
        confidence = np.zeros((rows,cols))
        weights = self.getWeights()
        weightNum = 0               # Number of processed weights
        for f in self.factors:
            if not f.geoDataMatch(state):
                raise MCEError('Geometries of the state and factor rasters are different!')
            f.normalize(mode = 'maxmin')
            for i in xrange(f.getBandsCount()):
                band = f.getBand(i+1)
                confidence = confidence + band*weights[weightNum]
                mask = np.ma.mask_or(mask, band.mask)
                weightNum = weightNum + 1
        confidence = confidence*initStateMask
        prediction = np.copy(state.getBand(1))
        prediction = np.logical_not(initStateMask) * prediction
        prediction = prediction + initStateMask*self.finalStateNum

        predicted_band = np.ma.array(data=prediction, mask=mask)
        self.prediction = Raster()
        self.prediction.create([predicted_band], geodata)
        confidence_band = np.ma.array(data=confidence, mask=mask)
        self.confidence = Raster()
        self.confidence.create([confidence_band], geodata)
Esempio n. 37
0
    def setUp(self):
        self.factor = Raster("../../examples/multifact.tif")

        self.sites = Raster("../../examples/sites.tif")
        self.sites.resetMask(maskVals=[0])

        mask = [[False, False, False], [False, False, False], [True, False, False]]
        fact = [[1, 1, 3], [3, 2, 1], [0, 3, 1]]
        site = [[False, True, False], [False, True, False], [False, False, True]]
        self.factraster = ma.array(data=fact, mask=mask, dtype=np.int)
        self.sitesraster = ma.array(data=site, mask=mask, dtype=np.bool)
Esempio n. 38
0
    def setUp(self):

        # Raster1:
        # ~ [1, 1, 3,],
        # ~ [3, 2, 1,],
        # ~ [0, 3, 1,]
        self.raster1 = Raster("../../examples/multifact.tif")
        self.raster1.resetMask([0])

        self.X = np.array([[1, 2, 3], [3, 2, 1], [0, 1, 1]])
        self.X = np.ma.array(self.X, mask=(self.X == 0))
        self.raster2 = Raster()
        self.raster2.create([self.X], self.raster1.getGeodata())

        self.aa = AreaAnalyst(self.raster1, self.raster2)

        self.crosstab = CrossTableManager(self.raster1, self.raster2)

        # Simple model
        self.model = Model(state=self.raster1)
Esempio n. 39
0
    def setUp(self):
        self.factor = Raster('../../examples/multifact.tif')
            #~ [1,1,3]
            #~ [3,2,1]
            #~ [0,3,1]

        self.state  = Raster('../../examples/sites.tif')
        self.state.resetMask(maskVals= [0])
            #~ [1,2,1],
            #~ [1,2,1],
            #~ [0,1,2]
        self.areaAnalyst = AreaAnalyst(self.state, second=None)
Esempio n. 40
0
    def test_Mask(self):
        reference = Raster('../../examples/data.tif')
        simulated = Raster('../../examples/data1.tif')
        reference.resetMask([2])
        simulated.resetMask([2])

        eb = EBudget(reference, simulated)
        W = eb.W

        S1 = weightedSum(eb.Sj[1], W)
        S3 = weightedSum(eb.Sj[3], W)
        np.testing.assert_almost_equal(S1, 5.0/8)
        np.testing.assert_almost_equal(S3, 3.0/8)

        noNo = eb.NoNo()
        np.testing.assert_almost_equal(noNo, 0.5)

        noM = eb.NoMed()
        np.testing.assert_almost_equal(noM, (5.0*5/8 + 3.0*3/8)/8)

        medM= eb.MedMed()
        np.testing.assert_almost_equal(medM, 4.0/8)

        medP= eb.MedPer()
        np.testing.assert_almost_equal(medP, 1.0)
Esempio n. 41
0
class Model(object):
    """
    Simple predicting model for Simulator tests
    """

    def __init__(self, state):
        self._predict(state)

    def getConfidence(self):
        return self.confidence

    def getPrediction(self, state, factors=None, calcTransitions=False):
        self._predict(state, factors)
        return self.prediction

    def _predict(self, state, factors=None, calcTransitions=False):
        geodata = state.getGeodata()
        band = state.getBand(1)
        rows, cols = geodata["ySize"], geodata["xSize"]
        # Let the new state is: 1 -> 2, 2- >3, 3 -> 1, then
        # the prediction is 1->1, 2->5, 3->6

        predicted_band = np.copy(band)
        predicted_band[band == 1] = 1.0
        predicted_band[band == 2] = 5.0
        predicted_band[band == 3] = 6.0

        # Let the confidence is 1/(1+row+col), where row is row number of the cell, col is column number of the cell.
        confidence_band = np.zeros([rows, cols])
        for i in xrange(cols):
            for j in xrange(rows):
                confidence_band[i, j] = 1.0 / (1 + i + j)

        predicted_bands = [np.ma.array(data=predicted_band, mask=band.mask)]
        confidence_bands = [np.ma.array(data=confidence_band, mask=band.mask)]
        self.prediction = Raster()
        self.prediction.create(predicted_bands, state.geodata)
        self.confidence = Raster()
        self.confidence.create(confidence_bands, state.geodata)
Esempio n. 42
0
class Model(object):
    '''
    Simple predicting model for Simulator tests
    '''
    def __init__(self, state):
        self.state = state
        self._predict(state)
    
    def getConfidence(self):
        return self.confidence
        
    def getPrediction(self, state, factors=None):
        self._predict(state, factors)
        return self.prediction
        
    def _predict(self, state, factors = None):
        geodata = self.state.getGeodata()
        band = state.getBand(1)
        rows, cols = geodata['ySize'], geodata['xSize']
        # Let the prediction is: 1 -> 2, 2- >3, 3 -> 1
        
        predicted_band  = np.copy(band)
        predicted_band[band == 1] = 2
        predicted_band[band == 2] = 3
        predicted_band[band == 3] = 1
        
        # Let the confidence is 1/(1+row+col), where row is row number of the cell, col is column number of the cell.
        confidence_band = np.zeros([rows, cols])
        for i in xrange(cols):
            for j in xrange(rows):
                confidence_band[i,j] = 1.0/(1+i+j)
        
        predicted_bands  = [np.ma.array(data = predicted_band, mask = band.mask)]
        confidence_bands = [np.ma.array(data = confidence_band, mask = band.mask)]
        self.prediction = Raster()
        self.prediction.create(predicted_bands, state.geodata)
        self.confidence = Raster()
        self.confidence.create(confidence_bands, state.geodata)
Esempio n. 43
0
class Model(object):
    '''
    Simple predicting model for Simulator tests
    '''
    def __init__(self, state):
        self._predict(state)

    def getConfidence(self):
        return self.confidence

    def getPrediction(self, state, factors=None, calcTransitions=False):
        self._predict(state, factors)
        return self.prediction

    def _predict(self, state, factors = None, calcTransitions=False):
        geodata = state.getGeodata()
        band = state.getBand(1)
        rows, cols = geodata['ySize'], geodata['xSize']
        # Let the new state is: 1 -> 2, 2- >3, 3 -> 1, then
        # the prediction is 1->1, 2->5, 3->6

        predicted_band  = np.copy(band)
        predicted_band[band == 1] = 1.0
        predicted_band[band == 2] = 5.0
        predicted_band[band == 3] = 6.0

        # Let the confidence is 1/(1+row+col), where row is row number of the cell, col is column number of the cell.
        confidence_band = np.zeros([rows, cols])
        for i in xrange(cols):
            for j in xrange(rows):
                confidence_band[i,j] = 1.0/(1+i+j)

        predicted_bands  = [np.ma.array(data = predicted_band, mask = band.mask)]
        confidence_bands = [np.ma.array(data = confidence_band, mask = band.mask)]
        self.prediction = Raster()
        self.prediction.create(predicted_bands, state.geodata)
        self.confidence = Raster()
        self.confidence.create(confidence_bands, state.geodata)
Esempio n. 44
0
 def _predict(self, state, factors = None):
     geodata = self.state.getGeodata()
     band = state.getBand(1)
     rows, cols = geodata['ySize'], geodata['xSize']
     # Let the prediction is: 1 -> 2, 2- >3, 3 -> 1
     
     predicted_band  = np.copy(band)
     predicted_band[band == 1] = 2
     predicted_band[band == 2] = 3
     predicted_band[band == 3] = 1
     
     # Let the confidence is 1/(1+row+col), where row is row number of the cell, col is column number of the cell.
     confidence_band = np.zeros([rows, cols])
     for i in xrange(cols):
         for j in xrange(rows):
             confidence_band[i,j] = 1.0/(1+i+j)
     
     predicted_bands  = [np.ma.array(data = predicted_band, mask = band.mask)]
     confidence_bands = [np.ma.array(data = confidence_band, mask = band.mask)]
     self.prediction = Raster()
     self.prediction.create(predicted_bands, state.geodata)
     self.confidence = Raster()
     self.confidence.create(confidence_bands, state.geodata)
Esempio n. 45
0
    def setUp(self):

        # Raster1:
            #~ [1, 1, 3,],
            #~ [3, 2, 1,],
            #~ [0, 3, 1,]
        self.raster1 = Raster('../../examples/multifact.tif')
        self.raster1.resetMask([0])

        self.X = np.array([
            [1, 2, 3],
            [3, 2, 1],
            [0, 1, 1]
        ])
        self.X = np.ma.array(self.X, mask=(self.X == 0))
        self.raster2 = Raster()
        self.raster2.create([self.X], self.raster1.getGeodata())

        self.aa = AreaAnalyst(self.raster1, self.raster2)

        self.crosstab = CrossTableManager(self.raster1, self.raster2)

        # Simple model
        self.model = Model(state=self.raster1)
Esempio n. 46
0
    def makeChangeMap(self):
        rows, cols = self.geodata['ySize'], self.geodata['xSize']
        band = np.zeros([rows, cols], dtype=np.int16)

        f, s = self.first, self.second
        if self.initRaster == None:
            checkPersistent = False
        else:
            checkPersistent = True
            t = self.initRaster.getBand(1)
        raster = None
        try:
            self.rangeChanged.emit(self.tr("Creating change map %p%"), rows)
            for i in xrange(rows):
                for j in xrange(cols):
                    if (f.mask.shape == ()) or (not f.mask[i,j]):
                        r = f[i,j]
                        c = s[i,j]
                        # Percistent category is the category that is constant for all three rasters
                        if checkPersistent and (r==c) and (r==t[i,j]):
                            band[i, j] = self.persistentCategoryCode
                        else:
                            band[i, j] = self.encode(r, c)
                self.updateProgress.emit()
            bands = [np.ma.array(data = band, mask = f.mask, dtype=np.int16)]
            raster = Raster()
            raster.create(bands, self.geodata)
            self.changeMap = raster
        except MemoryError:
            self.errorReport.emit(self.tr("The system out of memory during change map creating"))
            raise
        except:
            self.errorReport.emit(self.tr("An unknown error occurs during change map creating"))
            raise
        finally:
            self.processFinished.emit(raster)
Esempio n. 47
0
    def setUp(self):
        self.output  = Raster('../../examples/multifact.tif')
            #~ [1,1,3]
            #~ [3,2,1]
            #~ [0,3,1]
        self.output.resetMask([0])
        self.state   = self.output
        self.factors = [Raster('../../examples/sites.tif'), Raster('../../examples/sites.tif')]
            #~ [1,2,1],
            #~ [1,2,1],
            #~ [0,1,2]


        self.output1  = Raster('../../examples/data.tif')
        self.state1   = self.output1
        self.factors1 = [Raster('../../examples/fact16.tif')]
Esempio n. 48
0
    def test_WoeManager(self):
        aa = AreaAnalyst(self.sites, self.sites)
        w1 = WoeManager([self.factor], aa)
        p = w1.getPrediction(self.sites).getBand(1)
        assert_array_equal(p, self.sites.getBand(1))

        initState = Raster("../../examples/data.tif")
        finalState = Raster("../../examples/data1.tif")
        aa = AreaAnalyst(initState, finalState)
        w = WoeManager([initState], aa)
        p = w.getPrediction(initState).getBand(1)

        # Calculate by hands:
        # 1->1 transition raster:
        r11 = [[1, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 1->2 raster:
        r12 = [[0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 1->3 raster:
        r13 = [[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 2->1
        r21 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 2->2
        r22 = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
        # 2->3
        r23 = [[0, 0, 0, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 0]]
        # 3->1
        r31 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 0, 0]]
        # 3->2
        r32 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]]
        # 3->3
        r33 = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0]]
        geodata = initState.getGeodata()
        sites = {"11": r11, "12": r12, "13": r13, "21": r21, "22": r22, "23": r23, "31": r31, "32": r32, "33": r33}
        woeDict = {}  # WoE of transitions
        for k in sites.keys():  #
            if k != "21":  # !!! r21 is zero
                x = Raster()
                x.create([np.ma.array(data=sites[k])], geodata)
                sites[k] = x
                woeDict[k] = woe(initState.getBand(1), x.getBand(1))
        # w1max = np.maximum(woeDict['11'], woeDict['12'], woeDict['13'])
        # w2max = np.maximum(woeDict['22'], woeDict['23'])
        # w3max = np.maximum(woeDict['31'], woeDict['32'], woeDict['33'])
        # Answer is index of finalClass that maximizes weights of transiotion initClass -> finalClass
        answer = [[1, 1, 1, 1], [1, 1, 3, 3], [3, 3, 3, 3], [1, 1, 1, 1]]
        assert_array_equal(p, answer)

        w = WoeManager([initState], aa, bins={0: [[2]]})
        p = w.getPrediction(initState).getBand(1)
Esempio n. 49
0
 def test_save(self):
     try:
         filename = 'temp.tiff'
         self.r1.save(filename)
         r2 = Raster(filename)
         self.assertEqual(r2.get_dtype(), self.r1.get_dtype())
         self.assertEqual(r2.getBandsCount(), self.r1.getBandsCount())
         for i in range(r2.getBandsCount()):
             assert_array_equal(r2.getBand(i + 1), self.r1.getBand(i + 1))
     finally:
         os.remove(filename)
Esempio n. 50
0
    def setUp(self):
        self.r1 = Raster('examples/multifact.tif')
        self.r2 = Raster('examples/sites.tif')
        self.r3 = Raster('examples/two_band.tif')

        # r1
        data1 = np.array([[1, 1, 3], [3, 2, 1], [0, 3, 1]])
        # r2
        data2 = np.array([[1, 2, 1], [1, 2, 1], [0, 1, 2]])
        mask = [[False, False, False], [False, False, False],
                [False, False, False]]
        self.data1 = ma.array(data=data1, mask=mask)
        self.data2 = ma.array(data=data2, mask=mask)
Esempio n. 51
0
    def test_coarse(self):
        reference = Raster('../../examples/data.tif')
        simulated = Raster('../../examples/data1.tif')
        reference.resetMask([2])
        simulated.resetMask([2])

        eb = EBudget(reference, simulated)
        eb.coarse(2)
        # W
        answer = np.array([[1.0, 0.25], [0.5, 0.25]])
        np.testing.assert_array_equal(eb.W, answer)
        # Rj
        answer1 = np.array([[1.0, 1.0], [0, 0]])
        answer3 = np.array([[0, 0], [1.0, 1.0]])
        ans = {1: answer1, 3: answer3}
        np.testing.assert_equal(eb.Rj, ans)
        # Sj
        answer1 = np.array([[3.0 / 4, 0.0], [1.0, 0]])
        answer3 = np.array([[1.0 / 4, 1.0], [0, 1.0]])
        ans = {1: answer1, 3: answer3}
        np.testing.assert_equal(eb.Sj, ans)

        eb.coarse(2)
        # W
        answer = np.array([[0.5]])
        np.testing.assert_array_equal(eb.W, answer)
        # Rj
        answer1 = np.array([[(1 + 1.0 / 4) / 2]])
        answer3 = np.array([[(1.0 / 2 + 1.0 / 4) / 2]])
        ans = {1: answer1, 3: answer3}
        np.testing.assert_equal(eb.Rj, ans)
        # Sj
        answer1 = np.array([[(3.0 / 4 + 0.5) / 2]])
        answer3 = np.array([[(1.0 / 4 + 1.0 / 4 + 1.0 / 4) / 2]])
        ans = {1: answer1, 3: answer3}
        np.testing.assert_equal(eb.Sj, ans)
Esempio n. 52
0
    def setUp(self):
        self.output = Raster('../../examples/multifact.tif')
        #~ [1,1,3]
        #~ [3,2,1]
        #~ [0,3,1]
        self.output.resetMask([0])
        self.state = self.output
        self.factors = [
            Raster('../../examples/sites.tif'),
            Raster('../../examples/sites.tif')
        ]
        #~ [1,2,1],
        #~ [1,2,1],
        #~ [0,1,2]

        self.output1 = Raster('../../examples/data.tif')
        self.state1 = self.output1
        self.factors1 = [Raster('../../examples/fact16.tif')]
Esempio n. 53
0
def main(initRaster, finalRaster, factors):
    print 'Start Reading Init Data...', clock()
    initRaster = Raster(initRaster)
    finalRaster = Raster(finalRaster)
    factors = [Raster(rasterName) for rasterName in factors]
    print 'Finish Reading Init Data', clock(), '\n'

    print "Start Making CrossTable...", clock()
    crosstab = CrossTableManager(initRaster, finalRaster)
    #print crosstab.getTransitionStat()
    print "Finish Making CrossTable", clock(), '\n'

    # Create and Train Analyst
    print 'Start creating AreaAnalyst...', clock()
    analyst = AreaAnalyst(initRaster, finalRaster)
    print 'Finish creating AreaAnalyst ...', clock(), '\n'

    print 'Start Making Change Map...', clock()
    analyst = AreaAnalyst(initRaster, finalRaster)
    changeMap = analyst.getChangeMap()
    print 'Finish Making Change Map', clock(), '\n'

    #~ # Create and Train ANN Model
    model = MlpManager(ns=1)
    model.createMlp(initRaster, factors, changeMap, [10])
    print 'Start Setting MLP Trainig Data...', clock()
    model.setTrainingData(initRaster,
                          factors,
                          changeMap,
                          mode='Stratified',
                          samples=1000)
    print 'Finish Setting Trainig Data', clock(), '\n'
    print 'Start MLP Training...', clock()
    model.train(20, valPercent=20)
    print 'Finish Trainig', clock(), '\n'

    # print 'Start ANN Prediction...', clock()
    # predict = model.getPrediction(initRaster, factors, calcTransitions=True)
    # confidence = model.getConfidence()
    # potentials = model.getTransitionPotentials()

    #~ # Create and Train LR Model
    #~ model = LR(ns=0)
    #~ print 'Start Setting LR Trainig Data...', clock()
    #~ model.setState(initRaster)
    #~ model.setFactors(factors)
    #~ model.setOutput(changeMap)
    #~ model.setMode('Stratified')
    #~ model.setSamples(100)
    #~ model.setTrainingData()
    #~ print 'Finish Setting Trainig Data', clock(), '\n'
    #~ print 'Start LR Training...', clock()
    #~ model.train()
    #~ print 'Finish Trainig', clock(), '\n'
    #~
    #~ print 'Start LR Prediction...', clock()
    #~ predict = model.getPrediction(initRaster, factors, calcTransitions=True)
    #~ print 'Finish LR Prediction...', clock(), '\n'

    # Create and Train WoE Model
    # print 'Start creating AreaAnalyst...', clock()
    # analyst = AreaAnalyst(initRaster, finalRaster)
    # print 'Finish creating AreaAnalyst ...', clock(), '\n'
    # print 'Start creating WoE model...', clock()
    # bins = {0: [[1000, 3000]], 1: [[200, 500, 1500]]}
    # model = WoeManager(factors, analyst, bins= bins)
    # model.train()
    # print 'Finish creating WoE model...', clock(), '\n'

    #~ # Create and Train MCE Model
    #~ print 'Start creating MCE model...', clock()
    #~ matrix = [
    #~ [1,     6],
    #~ [1.0/6,   1]
    #~ ]
    #~ model = MCE(factors, matrix, 2, 3, analyst)
    #~ print 'Finish creating MCE model...', clock(), '\n'

    # predict = model.getPrediction(initRaster, factors, calcTransitions=True)
    # confidence = model.getConfidence()
    # potentials = model.getTransitionPotentials()
    # filename = 'predict.tif'
    # confname = 'confidence.tif'
    # trans_prefix='trans_'
    # try:
    #     predict.save(filename)
    #     confidence.save(confname)
    #     if potentials != None:
    #         for k,v in potentials.iteritems():
    #             map = v.save(trans_prefix+str(k) + '.tif')
    # finally:
    #     os.remove(filename)
    #     #pass
    # print 'Finish Saving...', clock(), '\n'

    # simulation
    print 'Start Simulation...', clock()
    simulator = Simulator(initRaster, factors, model, crosstab)
    # Make 1 cycle of simulation:
    simulator.setIterationCount(1)
    simulator.simN()
    monteCarloSim = simulator.getState()  # Result of MonteCarlo simulation
    errors = simulator.errorMap(finalRaster)  # Risk class validation
    riskFunct = simulator.getConfidence()  # Risk function

    try:
        monteCarloSim.save('simulation_result.tiff')
        errors.save('risk_validation.tiff')
        riskFunct.save('risk_func.tiff')
    finally:
        pass
        # os.remove('simulation_result.tiff')
        # os.remove('risk_validation.tiff')
        # os.remove('risk_func.tiff')
    print 'Finish Simulation', clock(), '\n'

    print 'Done', clock()
Esempio n. 54
0
class TestLRManager(unittest.TestCase):
    def setUp(self):
        self.output = Raster('../../examples/multifact.tif')
        #~ [1,1,3]
        #~ [3,2,1]
        #~ [0,3,1]
        self.output.resetMask([0])
        self.state = self.output
        self.factors = [
            Raster('../../examples/sites.tif'),
            Raster('../../examples/sites.tif')
        ]
        #~ [1,2,1],
        #~ [1,2,1],
        #~ [0,1,2]

        self.output1 = Raster('../../examples/data.tif')
        self.state1 = self.output1
        self.factors1 = [Raster('../../examples/fact16.tif')]

    def test_LR(self):
        #~ data = [
        #~ [3.0, 1.0, 3.0],
        #~ [3.0, 1.0, 3.0],
        #~ [0,   3.0, 1.0]
        #~ ]
        #~ result = np.ma.array(data = data, mask = (data==0))

        lr = LR(ns=0)  # 3-class problem
        lr.setState(self.state)
        lr.setFactors(self.factors)
        lr.setOutput(self.output)
        lr.setTrainingData()
        lr.train()
        predict = lr.getPrediction(self.state, self.factors)
        predict = predict.getBand(1)
        assert_array_equal(predict, self.output.getBand(1))

        lr = LR(ns=1)  # Two-class problem (it's because of boundary effect)
        lr.setState(self.state1)
        lr.setFactors(self.factors1)
        lr.setOutput(self.output1)
        lr.setTrainingData()
        lr.train()
        predict = lr.getPrediction(self.state1,
                                   self.factors1,
                                   calcTransitions=True)
        predict = predict.getBand(1)
        self.assertEquals(predict.dtype, np.uint8)
        data = [
            [0.0, 0.0, 0.0, 0.0],
            [0.0, 1.0, 2.0, 0.0],
            [0.0, 2.0, 2.0, 0.0],
            [0.0, 0.0, 0.0, 0.0],
        ]
        result = np.ma.array(data=data, mask=(data == 0))
        assert_array_equal(predict, result)

        # Confidence is zero
        confid = lr.getConfidence()
        self.assertEquals(confid.getBand(1).dtype, np.uint8)

        # Transition Potentials
        potentials = lr.getTransitionPotentials()
        cats = self.output.getBandGradation(1)
        for cat in [1.0, 2.0]:
            map = potentials[cat]
            self.assertEquals(map.getBand(1).dtype, np.uint8)
Esempio n. 55
0
 def setUp(self):
     self.init = Raster('../../examples/init.tif', maskVals={1: [255]})
     self.final = Raster('../../examples/final.tif', maskVals={1: [255]})
Esempio n. 56
0
class TestMlpManager (unittest.TestCase):
    def setUp(self):
        self.factors = [Raster('../../examples/multifact.tif')]
        self.output = Raster('../../examples/sites.tif')
        #~ sites.tif is 1-band 3x3 raster:
            #~ [1,2,1],
            #~ [1,2,1],
            #~ [0,1,2]

        self.factors2 = [Raster('../../examples/multifact.tif'), Raster('../../examples/multifact.tif')]
        self.factors3 = [Raster('../../examples/two_band.tif')]
        self.factors4 = [Raster('../../examples/two_band.tif'), Raster('../../examples/multifact.tif')]

        self.output1  = Raster('../../examples/data.tif')
        self.state1   = self.output1
        self.factors1 = [Raster('../../examples/fact16.tif')]

    def test_MlpManager(self):
        mng = MlpManager(ns=1)
        mng.createMlp(self.output, self.factors2, self.output, [10])
        assert_array_equal(mng.getMlpTopology(), [2*9 + 2*9, 10, 3])

        mng = MlpManager()
        mng.createMlp(self.output, self.factors, self.output, [10])
        assert_array_equal(mng.getMlpTopology(), [2*1 + 1*1, 10, 3])

    def test_setTrainingData(self):
        mng = MlpManager()
        mng.createMlp(self.output, self.factors, self.output, [10])
        stat = self.factors[0].getBandStat(1) # mean & std
        m,s = stat['mean'], stat['std']
        mng.setTrainingData(self.output, self.factors, self.output, shuffle=False)

        min, max = mng.sigmin, mng.sigmax
        data = np.array(
            [
                ((0,3), [0, 1], (1.0-m)/s, [min,  max, min]),
                ((1,3), [0, 0], (1.0-m)/s, [min,  min, max]),
                ((2,3), [0, 1], (3.0-m)/s, [min,  max, min]),
                ((0,2), [0, 1], (3.0-m)/s, [min,  max, min]),
                ((1,2), [0, 0], (2.0-m)/s, [min,  min, max]),
                ((2,2), [0, 1], (1.0-m)/s, [min,  max, min]),
                ((0,1), [1, 0], (0.0-m)/s, [max,  min, min]),
                ((1,1), [0, 1], (3.0-m)/s, [min,  max, min]),
                ((2,1), [0, 0], (1.0-m)/s, [min,  min, max]),
            ],
            dtype=[('coords', float, 2),('state', float, (2,)), ('factors', float, (1,)), ('output', float, 3)]
        )
        self.assertEqual(mng.data.shape, (9,))
        for i in range(len(data)):
            assert_array_equal(data[i]['coords'], mng.data[i]['coords'])
            assert_array_equal(data[i]['factors'], mng.data[i]['factors'])
            assert_array_equal(data[i]['output'], mng.data[i]['output'])

        # two input rasters
        mng = MlpManager(ns=1)
        mng.createMlp(self.output, self.factors2, self.output, [10])
        mng.setTrainingData(self.output, self.factors2, self.output)
        data = [
            {
            'factors': (np.array([ 1.,  1.,  3.,  3.,  2.,  1.,  0.,  3.,  1.,
                                1.,  1.,  3.,  3.,  2.,  1.,  0.,  3.,  1.]) - stat['mean'])/stat['std'],
            'output': np.array([min, min,  max]),
            'state': np.array([0,1,  0,0,  0,1,   0,1,  0,0,  0,1,   1,0,  0,1,  0,0])
            }
        ]
        self.assertEqual(mng.data.shape, (1,))
        assert_array_equal(data[0]['factors'], mng.data[0]['factors'])
        assert_array_equal(data[0]['output'], mng.data[0]['output'])
        assert_array_equal(data[0]['state'], mng.data[0]['state'])

        # Multiband input
        mng = MlpManager(ns=1)
        mng.createMlp(self.output, self.factors3, self.output, [10])
        stat1 = self.factors3[0].getBandStat(1) # mean & std
        m1,s1 = stat1['mean'], stat1['std']
        stat2 = self.factors3[0].getBandStat(2) # mean & std
        m2,s2 = stat2['mean'], stat2['std']
        mng.setTrainingData(self.output, self.factors3, self.output)

        data = [
            {
            'factors': np.array([ (1.-m1)/s1,  (2.-m1)/s1,  (1.-m1)/s1,  (1.-m1)/s1,  (2.-m1)/s1,  (1.-m1)/s1,  (0.-m1)/s1,  (1.-m1)/s1,  (2.-m1)/s1,
                                (1.-m2)/s2,  (1.-m2)/s2,  (3.-m2)/s2,  (3.-m2)/s2,  (2.-m2)/s2,  (1.-m2)/s2,  (0.-m2)/s2,  (3.-m2)/s2,  (1.-m2)/s2]),
            'output': np.array([min, min,  max]),
            'state': np.array([0,1,  0,0,  0,1,   0,1,  0,0,  0,1,   1,0,  0,1,  0,0])
            }
        ]
        self.assertEqual(mng.data.shape, (1,))
        assert_array_equal(data[0]['factors'], mng.data[0]['factors'])
        assert_array_equal(data[0]['output'], mng.data[0]['output'])
        assert_array_equal(data[0]['state'], mng.data[0]['state'])

        # Complex case:
        mng = MlpManager(ns=1)
        mng.createMlp(self.output, self.factors4, self.output, [10])
        stat1 = self.factors4[0].getBandStat(1) # mean & std
        m1,s1 = stat1['mean'], stat1['std']
        stat2 = self.factors4[0].getBandStat(2) # mean & std
        m2,s2 = stat2['mean'], stat2['std']
        stat3 = self.factors4[1].getBandStat(1)
        m3,s3 = stat3['mean'], stat2['std']

        mng.setTrainingData(self.output, self.factors4, self.output)

        data = [
            {
            'factors': np.array([ (1.-m1)/s1,  (2.-m1)/s1,  (1.-m1)/s1,  (1.-m1)/s1,  (2.-m1)/s1,  (1.-m1)/s1,  (0.-m1)/s1,  (1.-m1)/s1,  (2.-m1)/s1,
                                (1.-m2)/s2,  (1.-m2)/s2,  (3.-m2)/s2,  (3.-m2)/s2,  (2.-m2)/s2,  (1.-m2)/s2,  (0.-m2)/s2,  (3.-m2)/s2,  (1.-m2)/s2,
                                (1.-m3)/s3,  (1.-m3)/s3,  (3.-m3)/s3,  (3.-m3)/s3,  (2.-m3)/s3,  (1.-m3)/s3,  (0.-m3)/s3,  (3.-m3)/s3,  (1.-m3)/s3]),
            'output': np.array([min, min,  max]),
            'state': np.array([0,1,  0,0,  0,1,   0,1,  0,0,  0,1,   1,0,  0,1,  0,0])
            }
        ]
        self.assertEqual(mng.data.shape, (1,))
        assert_array_equal(data[0]['factors'], mng.data[0]['factors'])
        assert_array_equal(data[0]['output'], mng.data[0]['output'])
        assert_array_equal(data[0]['state'], mng.data[0]['state'])

    def test_train(self):
        mng = MlpManager()
        mng.createMlp(self.output, self.factors, self.output, [10])
        mng.setTrainingData(self.output, self.factors, self.output)

        mng.train(1, valPercent=50)
        val = mng.getMinValError()
        tr  = mng.getTrainError()
        mng.train(20, valPercent=50, continue_train=True)
        self.assertGreaterEqual(val, mng.getMinValError())

        mng = MlpManager(ns=1)
        mng.createMlp(self.state1, self.factors1, self.output1, [10])
        mng.setTrainingData(self.state1, self.factors1, self.output1)
        mng.train(1, valPercent=20)
        predict = mng.getPrediction(self.state1, self.factors1)
        mask = predict.getBand(1).mask

        self.assertTrue(not all(mask.flatten()))

    def test_predict(self):
        mng = MlpManager()
        mng.createMlp(self.output, self.factors, self.output, [10])
        weights = mng.copyWeights()

        # Set weights=0
        # then the output must be sigmoid(0)
        layers = []
        for layer in weights:
            shape = layer.shape
            layers.append(np.zeros(shape))
        mng.setMlpWeights(layers)
        mng._predict(self.output, self.factors)


        # Prediction ( the output must be sigmoid(0) )
        raster = mng.getPrediction(self.output, self.factors, calcTransitions=True)
        assert_array_equal(raster.getBand(1), sigmoid(0)*np.ones((3,3)))
        # Confidence is zero
        confid = mng.getConfidence()
        self.assertEquals(confid.getBand(1).dtype, np.uint8)
        assert_array_equal(confid.getBand(1), np.zeros((3,3)))
        # Transition Potentials (is (sigmoid(0) - sigmin)/sigrange )
        potentials = mng.getTransitionPotentials()
        cats = self.output.getBandGradation(1)
        for cat in cats:
            map = potentials[cat]
            self.assertEquals(map.getBand(1).dtype, np.uint8)
            assert_array_equal(map.getBand(1), 50*np.ones((3,3)))
Esempio n. 57
0
    def test_normalize(self):
        multifact = [
            [1, 1, 3],
            [3, 2, 1],
            [0, 3, 1],
        ]

        # Normalize using std and mean
        r1 = Raster('examples/multifact.tif')
        r1.normalize()
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)

        # Normalize using min and max
        r1 = Raster('examples/multifact.tif')
        r1.normalize(mode='maxmin')
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)

        # Two normalization procedures
        r1 = Raster('examples/multifact.tif')
        r1.normalize()
        r1.normalize(mode='maxmin')
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)
        r1 = Raster('examples/multifact.tif')
        r1.normalize(mode='maxmin')
        r1.normalize()
        r1.denormalize()
        assert_array_equal(r1.getBand(1), multifact)
Esempio n. 58
0
 def test_isContinues(self):
     rast = Raster('examples/multifact.tif')
     self.assertFalse(rast.isCountinues(bandNo=1))
     rast = Raster('examples/dist_roads.tif')
     self.assertTrue(rast.isCountinues(bandNo=1))