Esempio n. 1
0
    def test_loss_print(self):
        log_stream = StringIO()
        log_handler = logging.StreamHandler(log_stream)
        log_handler.setLevel(logging.INFO)
        key_to_handler = "test_logging"
        key_to_print = "myLoss"

        # set up engine
        def _train_func(engine, batch):
            return [torch.tensor(0.0)]

        engine = Engine(_train_func)

        # set up testing handler
        logger = logging.getLogger(key_to_handler)
        logger.setLevel(logging.INFO)
        logger.addHandler(log_handler)
        stats_handler = StatsHandler(iteration_log=True,
                                     epoch_log=False,
                                     name=key_to_handler,
                                     tag_name=key_to_print)
        stats_handler.attach(engine)

        engine.run(range(3), max_epochs=2)

        # check logging output
        output_str = log_stream.getvalue()
        log_handler.close()
        has_key_word = re.compile(f".*{key_to_print}.*")
        content_count = 0
        for line in output_str.split("\n"):
            if has_key_word.match(line):
                content_count += 1
        self.assertTrue(content_count > 0)
Esempio n. 2
0
    def test_metrics_print(self):
        log_stream = StringIO()
        logging.basicConfig(stream=log_stream, level=logging.INFO)
        key_to_handler = "test_logging"
        key_to_print = "testing_metric"

        # set up engine
        def _train_func(engine, batch):
            return torch.tensor(0.0)

        engine = Engine(_train_func)

        # set up dummy metric
        @engine.on(Events.EPOCH_COMPLETED)
        def _update_metric(engine):
            current_metric = engine.state.metrics.get(key_to_print, 0.1)
            engine.state.metrics[key_to_print] = current_metric + 0.1

        # set up testing handler
        stats_handler = StatsHandler(name=key_to_handler)
        stats_handler.attach(engine)

        engine.run(range(3), max_epochs=2)

        # check logging output
        output_str = log_stream.getvalue()
        grep = re.compile(f".*{key_to_handler}.*")
        has_key_word = re.compile(f".*{key_to_print}.*")
        for idx, line in enumerate(output_str.split("\n")):
            if grep.match(line):
                if idx in [5, 10]:
                    self.assertTrue(has_key_word.match(line))
Esempio n. 3
0
    def test_default_logger(self):
        log_stream = StringIO()
        log_handler = logging.StreamHandler(log_stream)
        log_handler.setLevel(logging.INFO)
        key_to_print = "myLoss"

        # set up engine
        def _train_func(engine, batch):
            return [torch.tensor(0.0)]

        engine = Engine(_train_func)
        engine.logger.addHandler(log_handler)

        # set up testing handler
        stats_handler = StatsHandler(name=None, tag_name=key_to_print)
        stats_handler.attach(engine)
        # leverage `engine.logger` to print info
        engine.logger.setLevel(logging.INFO)
        level = logging.root.getEffectiveLevel()
        logging.basicConfig(level=logging.INFO)
        engine.run(range(3), max_epochs=2)
        logging.basicConfig(level=level)

        # check logging output
        output_str = log_stream.getvalue()
        log_handler.close()
        has_key_word = re.compile(f".*{key_to_print}.*")
        content_count = 0
        for line in output_str.split("\n"):
            if has_key_word.match(line):
                content_count += 1
        self.assertTrue(content_count > 0)
Esempio n. 4
0
    def test_loss_print(self):
        log_stream = StringIO()
        logging.basicConfig(stream=log_stream, level=logging.INFO)
        key_to_handler = 'test_logging'
        key_to_print = 'myLoss'

        # set up engine
        def _train_func(engine, batch):
            return torch.tensor(0.0)

        engine = Engine(_train_func)

        # set up testing handler
        stats_handler = StatsHandler(name=key_to_handler,
                                     tag_name=key_to_print)
        stats_handler.attach(engine)

        engine.run(range(3), max_epochs=2)

        # check logging output
        output_str = log_stream.getvalue()
        grep = re.compile('.*{}.*'.format(key_to_handler))
        has_key_word = re.compile('.*{}.*'.format(key_to_print))
        for idx, line in enumerate(output_str.split('\n')):
            if grep.match(line):
                if idx in [1, 2, 3, 6, 7, 8]:
                    self.assertTrue(has_key_word.match(line))
Esempio n. 5
0
    def test_loss_file(self):
        key_to_handler = "test_logging"
        key_to_print = "myLoss"

        with tempfile.TemporaryDirectory() as tempdir:
            filename = os.path.join(tempdir, "test_loss_stats.log")
            handler = logging.FileHandler(filename, mode="w")
            handler.setLevel(logging.INFO)

            # set up engine
            def _train_func(engine, batch):
                return [torch.tensor(0.0)]

            engine = Engine(_train_func)

            # set up testing handler
            logger = logging.getLogger(key_to_handler)
            logger.setLevel(logging.INFO)
            logger.addHandler(handler)
            stats_handler = StatsHandler(name=key_to_handler,
                                         tag_name=key_to_print)
            stats_handler.attach(engine)

            engine.run(range(3), max_epochs=2)
            handler.close()
            stats_handler.logger.removeHandler(handler)
            with open(filename) as f:
                output_str = f.read()
                has_key_word = re.compile(f".*{key_to_print}.*")
                content_count = 0
                for line in output_str.split("\n"):
                    if has_key_word.match(line):
                        content_count += 1
                self.assertTrue(content_count > 0)
    def test_loss_print(self):
        log_stream = StringIO()
        log_handler = logging.StreamHandler(log_stream)
        log_handler.setLevel(logging.INFO)
        key_to_handler = "test_logging"
        key_to_print = "myLoss"

        # set up engine
        def _train_func(engine, batch):
            return [torch.tensor(0.0)]

        engine = Engine(_train_func)

        # set up testing handler
        stats_handler = StatsHandler(name=key_to_handler,
                                     tag_name=key_to_print,
                                     logger_handler=log_handler)
        stats_handler.attach(engine)

        engine.run(range(3), max_epochs=2)

        # check logging output
        output_str = log_stream.getvalue()
        log_handler.close()
        grep = re.compile(f".*{key_to_handler}.*")
        has_key_word = re.compile(f".*{key_to_print}.*")
        for idx, line in enumerate(output_str.split("\n")):
            if grep.match(line):
                if idx in [1, 2, 3, 6, 7, 8]:
                    self.assertTrue(has_key_word.match(line))
Esempio n. 7
0
    def test_loss_file(self):
        logging.basicConfig(level=logging.INFO)
        key_to_handler = "test_logging"
        key_to_print = "myLoss"

        with tempfile.TemporaryDirectory() as tempdir:
            filename = os.path.join(tempdir, "test_loss_stats.log")
            handler = logging.FileHandler(filename, mode="w")

            # set up engine
            def _train_func(engine, batch):
                return torch.tensor(0.0)

            engine = Engine(_train_func)

            # set up testing handler
            stats_handler = StatsHandler(name=key_to_handler,
                                         tag_name=key_to_print,
                                         logger_handler=handler)
            stats_handler.attach(engine)

            engine.run(range(3), max_epochs=2)
            handler.stream.close()
            stats_handler.logger.removeHandler(handler)
            with open(filename, "r") as f:
                output_str = f.read()
                grep = re.compile(f".*{key_to_handler}.*")
                has_key_word = re.compile(f".*{key_to_print}.*")
                for idx, line in enumerate(output_str.split("\n")):
                    if grep.match(line):
                        if idx in [1, 2, 3, 6, 7, 8]:
                            self.assertTrue(has_key_word.match(line))
Esempio n. 8
0
    def test_loss_dict(self):
        log_stream = StringIO()
        logging.basicConfig(stream=log_stream, level=logging.INFO)
        key_to_handler = "test_logging"
        key_to_print = "myLoss1"

        # set up engine
        def _train_func(engine, batch):
            return torch.tensor(0.0)

        engine = Engine(_train_func)

        # set up testing handler
        stats_handler = StatsHandler(
            name=key_to_handler, output_transform=lambda x: {key_to_print: x})
        stats_handler.attach(engine)

        engine.run(range(3), max_epochs=2)

        # check logging output
        output_str = log_stream.getvalue()
        grep = re.compile(f".*{key_to_handler}.*")
        has_key_word = re.compile(f".*{key_to_print}.*")
        for idx, line in enumerate(output_str.split("\n")):
            if grep.match(line):
                if idx in [1, 2, 3, 6, 7, 8]:
                    self.assertTrue(has_key_word.match(line))
Esempio n. 9
0
    def test_exception(self):
        # set up engine
        def _train_func(engine, batch):
            raise RuntimeError("test exception.")

        engine = Engine(_train_func)

        # set up testing handler
        stats_handler = StatsHandler()
        stats_handler.attach(engine)

        with self.assertRaises(RuntimeError):
            engine.run(range(3), max_epochs=2)
Esempio n. 10
0
    def train_handlers(self, context: Context):
        handlers: List[Any] = []

        # LR Scheduler
        lr_scheduler = self.lr_scheduler_handler(context)
        if lr_scheduler:
            handlers.append(lr_scheduler)

        if context.local_rank == 0:
            handlers.extend([
                StatsHandler(tag_name="train_loss",
                             output_transform=from_engine(["loss"],
                                                          first=True)),
                TensorBoardStatsHandler(
                    log_dir=context.events_dir,
                    tag_name="train_loss",
                    output_transform=from_engine(["loss"], first=True),
                ),
            ])

        if context.evaluator:
            logger.info(
                f"{context.local_rank} - Adding Validation to run every '{self._val_interval}' interval"
            )
            handlers.append(
                ValidationHandler(self._val_interval,
                                  validator=context.evaluator,
                                  epoch_level=True))

        return handlers
Esempio n. 11
0
 def val_handlers(self, context: Context):
     val_handlers = [
         StatsHandler(output_transform=lambda x: None),
         TensorBoardStatsHandler(log_dir=context.events_dir,
                                 output_transform=lambda x: None),
     ]
     return val_handlers if context.local_rank == 0 else None
Esempio n. 12
0
    def test_attributes_print(self):
        log_stream = StringIO()
        log_handler = logging.StreamHandler(log_stream)
        log_handler.setLevel(logging.INFO)
        key_to_handler = "test_logging"

        # set up engine
        def _train_func(engine, batch):
            return [torch.tensor(0.0)]

        engine = Engine(_train_func)

        # set up dummy metric
        @engine.on(Events.EPOCH_COMPLETED)
        def _update_metric(engine):
            if not hasattr(engine.state, "test1"):
                engine.state.test1 = 0.1
                engine.state.test2 = 0.2
            else:
                engine.state.test1 += 0.1
                engine.state.test2 += 0.2

        # set up testing handler
        logger = logging.getLogger(key_to_handler)
        logger.setLevel(logging.INFO)
        logger.addHandler(log_handler)
        stats_handler = StatsHandler(
            name=key_to_handler, state_attributes=["test1", "test2", "test3"])
        stats_handler.attach(engine)

        engine.run(range(3), max_epochs=2)

        # check logging output
        output_str = log_stream.getvalue()
        log_handler.close()
        has_key_word = re.compile(".*State values.*")
        content_count = 0
        for line in output_str.split("\n"):
            if has_key_word.match(line):
                content_count += 1
        self.assertTrue(content_count > 0)
Esempio n. 13
0
    def test_metrics_print(self):
        log_stream = StringIO()
        log_handler = logging.StreamHandler(log_stream)
        log_handler.setLevel(logging.INFO)
        key_to_handler = "test_logging"
        key_to_print = "testing_metric"

        # set up engine
        def _train_func(engine, batch):
            return [torch.tensor(0.0)]

        engine = Engine(_train_func)

        # set up dummy metric
        @engine.on(Events.EPOCH_COMPLETED)
        def _update_metric(engine):
            current_metric = engine.state.metrics.get(key_to_print, 0.1)
            engine.state.metrics[key_to_print] = current_metric + 0.1

        # set up testing handler
        logger = logging.getLogger(key_to_handler)
        logger.setLevel(logging.INFO)
        logger.addHandler(log_handler)
        stats_handler = StatsHandler(iteration_log=False,
                                     epoch_log=True,
                                     name=key_to_handler)
        stats_handler.attach(engine)

        engine.run(range(3), max_epochs=2)

        # check logging output
        output_str = log_stream.getvalue()
        log_handler.close()
        has_key_word = re.compile(f".*{key_to_print}.*")
        content_count = 0
        for line in output_str.split("\n"):
            if has_key_word.match(line):
                content_count += 1
        self.assertTrue(content_count > 0)
    def test_attributes_print(self):
        log_stream = StringIO()
        log_handler = logging.StreamHandler(log_stream)
        log_handler.setLevel(logging.INFO)
        key_to_handler = "test_logging"

        # set up engine
        def _train_func(engine, batch):
            return [torch.tensor(0.0)]

        engine = Engine(_train_func)

        # set up dummy metric
        @engine.on(Events.EPOCH_COMPLETED)
        def _update_metric(engine):
            if not hasattr(engine.state, "test1"):
                engine.state.test1 = 0.1
                engine.state.test2 = 0.2
            else:
                engine.state.test1 += 0.1
                engine.state.test2 += 0.2

        # set up testing handler
        stats_handler = StatsHandler(
            name=key_to_handler,
            state_attributes=["test1", "test2", "test3"],
            logger_handler=log_handler)
        stats_handler.attach(engine)

        engine.run(range(3), max_epochs=2)

        # check logging output
        output_str = log_stream.getvalue()
        log_handler.close()
        grep = re.compile(f".*{key_to_handler}.*")
        has_key_word = re.compile(".*State values.*")
        for idx, line in enumerate(output_str.split("\n")):
            if grep.match(line) and idx in [5, 10]:
                self.assertTrue(has_key_word.match(line))
Esempio n. 15
0
    def test_compute(self, data, expected):
        # Set up handlers
        handlers = [
            # Mark with Ignite Event
            MarkHandler(Events.STARTED),
            # Mark with literal
            MarkHandler("EPOCH_STARTED"),
            # Mark with literal and providing the message
            MarkHandler("EPOCH_STARTED", "Start of the epoch"),
            # Define a range using one prefix (between BATCH_STARTED and BATCH_COMPLETED)
            RangeHandler("Batch"),
            # Define a range using a pair of events
            RangeHandler((Events.STARTED, Events.COMPLETED)),
            # Define a range using a pair of literals
            RangeHandler(("GET_BATCH_STARTED", "GET_BATCH_COMPLETED"),
                         msg="Batching!"),
            # Define a range using a pair of literal and events
            RangeHandler(("GET_BATCH_STARTED", Events.COMPLETED)),
            # Define the start of range using literal
            RangePushHandler("ITERATION_STARTED"),
            # Define the start of range using event
            RangePushHandler(Events.ITERATION_STARTED, "Iteration 2"),
            # Define the start of range using literals and providing message
            RangePushHandler("EPOCH_STARTED", "Epoch 2"),
            # Define the end of range using Ignite Event
            RangePopHandler(Events.ITERATION_COMPLETED),
            RangePopHandler(Events.EPOCH_COMPLETED),
            # Define the end of range using literal
            RangePopHandler("ITERATION_COMPLETED"),
            # Other handlers
            StatsHandler(tag_name="train",
                         output_transform=from_engine(["label"], first=True)),
        ]

        # Set up an engine
        engine = SupervisedEvaluator(
            device=torch.device("cpu:0"),
            val_data_loader=data,
            epoch_length=1,
            network=torch.nn.PReLU(),
            postprocessing=lambda x: dict(pred=x["pred"] + 1.0),
            decollate=True,
            val_handlers=handlers,
        )
        # Run the engine
        engine.run()

        # Get the output from the engine
        output = engine.state.output[0]

        torch.testing.assert_allclose(output["pred"], expected)
Esempio n. 16
0
File: trainer.py Progetto: ckbr0/RIS
    def run(self, date=None) -> str:
        
        if date is not None:
            now = date
        else:
            now = datetime.datetime.now()
        datetime_string = now.strftime('%d/%m/%Y %H:%M:%S')
        print(f'Training started: {datetime_string}')

        now = datetime.datetime.now()
        timedate_info = str(now).split(' ')[0] + '_' + str(now.strftime("%H:%M:%S")).replace(':', '-')
        training_dir = os.path.join(self.out_dir, 'training')
        if not os.path.exists(training_dir):
            os.mkdir(training_dir)
        self.output_dir = os.path.join(training_dir, self.out_name +  '_' + timedate_info)
        os.mkdir(self.output_dir)
        
        self.validator.output_dir = self.output_dir

        if self.summary_writer is None:
            self.summary_writer = SummaryWriter(log_dir=self.output_dir)
        if self.validator.summary_writer is None:
            self.validator.summary_writer = self.summary_writer

        handlers = [
            MetricLogger(self.output_dir, validator=self.validator),
            ValidationHandler(
                validator=self.validator,
                start=self.validation_epoch,
                interval=self.validation_interval
            ),
            StatsHandler(tag_name="loss", output_transform=lambda x: x["loss"]),
            TensorBoardStatsHandler(
                summary_writer=self.summary_writer,
                tag_name="Loss",
                output_transform=lambda x: x["loss"]
            ),
        ]
        save_dict = { 'network': self.network, 'optimizer': self.optimizer }
        if self.lr_scheduler is not None:
            handlers.insert(0, LrScheduleHandler(lr_scheduler=self.lr_scheduler, print_lr=True))
            save_dict['lr_scheduler'] = self.lr_scheduler
        handlers.append(
            CheckpointSaver(save_dir=self.output_dir, save_dict=save_dict, save_interval=1, n_saved=1)
        )
        self._register_handlers(handlers)

        super().run()
        return self.output_dir
Esempio n. 17
0
    def __init__(
        self,
        device: torch.device,
        test_data_loader: Union[Iterable, DataLoader],
        network: torch.nn.Module,
        load_dir: str,
        out_dir: str,
        n_classes,
        non_blocking: bool = False,
        post_transform: Optional[Transform] = None,
        amp: bool = False,
        mode: Union[ForwardMode, str] = ForwardMode.EVAL,
    ) -> None:
        self.load_dir = load_dir
        self.out_dir = out_dir

        if n_classes > 1:
            to_onehot = AsDiscrete(to_onehot=True, n_classes=2)
        else:
            to_onehot = lambda x: x
        super().__init__(
            device,
            test_data_loader,
            network,
            non_blocking=non_blocking,
            post_transform=post_transform,
            key_val_metric={
                "Test_AUC":
                ROCAUC(average="micro",
                       output_transform=lambda x:
                       (x["pred"], to_onehot(x["label"])))
            },
            additional_metrics={
                "Test_ACC":
                Accuracy(output_transform=lambda x: (AsDiscrete(
                    threshold_values=True)(x["pred"]), to_onehot(x["label"])))
            },
            amp=amp,
            mode=mode)

        load_path = glob(os.path.join(self.load_dir, 'network_key_metric*'))[0]
        handlers = [
            StatsHandler(output_transform=lambda x: None),
            CheckpointLoader(load_path=load_path,
                             load_dict={"network": self.network}),
        ]
        self._register_handlers(handlers)
Esempio n. 18
0
    def run(self, global_epoch: int) -> None:

        if global_epoch == 1:
            handlers = [
                StatsHandler(),
                TensorBoardStatsHandler(
                    summary_writer=self.summary_writer
                ),  #, output_transform=lambda x: None),
                CheckpointSaver(save_dir=self.output_dir,
                                save_dict={"network": self.network},
                                save_key_metric=True),
                MetricsSaver(save_dir=self.output_dir,
                             metrics=['Valid_AUC', 'Valid_ACC']),
                self.early_stop_handler,
            ]
            self._register_handlers(handlers)

        return super().run(global_epoch=global_epoch)
Esempio n. 19
0
def run_training(train_file_list, valid_file_list, config_info):
    """
    Pipeline to train a dynUNet segmentation model in MONAI. It is composed of the following main blocks:
        * Data Preparation: Extract the filenames and prepare the training/validation processing transforms
        * Load Data: Load training and validation data to PyTorch DataLoader
        * Network Preparation: Define the network, loss function, optimiser and learning rate scheduler
        * MONAI Evaluator: Initialise the dynUNet evaluator, i.e. the class providing utilities to perform validation
            during training. Attach handlers to save the best model on the validation set. A 2D sliding window approach
            on the 3D volume is used at evaluation. The mean 3D Dice is used as validation metric.
        * MONAI Trainer: Initialise the dynUNet trainer, i.e. the class providing utilities to perform the training loop.
        * Run training: The MONAI trainer is run, performing training and validation during training.
    Args:
        train_file_list: .txt or .csv file (with no header) storing two-columns filenames for training:
            image filename in the first column and segmentation filename in the second column.
            The two columns should be separated by a comma.
            See monaifbs/config/mock_train_file_list_for_dynUnet_training.txt for an example of the expected format.
        valid_file_list: .txt or .csv file (with no header) storing two-columns filenames for validation:
            image filename in the first column and segmentation filename in the second column.
            The two columns should be separated by a comma.
            See monaifbs/config/mock_valid_file_list_for_dynUnet_training.txt for an example of the expected format.
        config_info: dict, contains configuration parameters for sampling, network and training.
            See monaifbs/config/monai_dynUnet_training_config.yml for an example of the expected fields.
    """

    """
    Read input and configuration parameters
    """
    # print MONAI config information
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)
    print_config()

    # print to log the parameter setups
    print(yaml.dump(config_info))

    # extract network parameters, perform checks/set defaults if not present and print them to log
    if 'seg_labels' in config_info['training'].keys():
        seg_labels = config_info['training']['seg_labels']
    else:
        seg_labels = [1]
    nr_out_channels = len(seg_labels)
    print("Considering the following {} labels in the segmentation: {}".format(nr_out_channels, seg_labels))
    patch_size = config_info["training"]["inplane_size"] + [1]
    print("Considering patch size = {}".format(patch_size))

    spacing = config_info["training"]["spacing"]
    print("Bringing all images to spacing = {}".format(spacing))

    if 'model_to_load' in config_info['training'].keys() and config_info['training']['model_to_load'] is not None:
        model_to_load = config_info['training']['model_to_load']
        if not os.path.exists(model_to_load):
            raise FileNotFoundError("Cannot find model: {}".format(model_to_load))
        else:
            print("Loading model from {}".format(model_to_load))
    else:
        model_to_load = None

    # set up either GPU or CPU usage
    if torch.cuda.is_available():
        print("\n#### GPU INFORMATION ###")
        print("Using device number: {}, name: {}\n".format(torch.cuda.current_device(), torch.cuda.get_device_name()))
        current_device = torch.device("cuda:0")
    else:
        current_device = torch.device("cpu")
        print("Using device: {}".format(current_device))

    # set determinism if required
    if 'manual_seed' in config_info['training'].keys() and config_info['training']['manual_seed'] is not None:
        seed = config_info['training']['manual_seed']
    else:
        seed = None
    if seed is not None:
        print("Using determinism with seed = {}\n".format(seed))
        set_determinism(seed=seed)

    """
    Setup data output directory
    """
    out_model_dir = os.path.join(config_info['output']['out_dir'],
                                 datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '_' +
                                 config_info['output']['out_postfix'])
    print("Saving to directory {}\n".format(out_model_dir))
    # create cache directory to store results for Persistent Dataset
    if 'cache_dir' in config_info['output'].keys():
        out_cache_dir = config_info['output']['cache_dir']
    else:
        out_cache_dir = os.path.join(out_model_dir, 'persistent_cache')
    persistent_cache: Path = Path(out_cache_dir)
    persistent_cache.mkdir(parents=True, exist_ok=True)

    """
    Data preparation
    """
    # Read the input files for training and validation
    print("*** Loading input data for training...")

    train_files = create_data_list_of_dictionaries(train_file_list)
    print("Number of inputs for training = {}".format(len(train_files)))

    val_files = create_data_list_of_dictionaries(valid_file_list)
    print("Number of inputs for validation = {}".format(len(val_files)))

    # Define MONAI processing transforms for the training data. This includes:
    # - Load Nifti files and convert to format Batch x Channel x Dim1 x Dim2 x Dim3
    # - CropForegroundd: Reduce the background from the MR image
    # - InPlaneSpacingd: Perform in-plane resampling to the desired spacing, but preserve the resolution along the
    #       last direction (lowest resolution) to avoid introducing motion artefact resampling errors
    # - SpatialPadd: Pad the in-plane size to the defined network input patch size [N, M] if needed
    # - NormalizeIntensityd: Apply whitening
    # - RandSpatialCropd: Crop a random patch from the input with size [B, C, N, M, 1]
    # - SqueezeDimd: Convert the 3D patch to a 2D one as input to the network (i.e. bring it to size [B, C, N, M])
    # - Apply data augmentation (RandZoomd, RandRotated, RandGaussianNoised, RandGaussianSmoothd, RandScaleIntensityd,
    #       RandFlipd)
    # - ToTensor: convert to pytorch tensor
    train_transforms = Compose(
        [
            LoadNiftid(keys=["image", "label"]),
            AddChanneld(keys=["image", "label"]),
            CropForegroundd(keys=["image", "label"], source_key="image"),
            InPlaneSpacingd(
                keys=["image", "label"],
                pixdim=spacing,
                mode=("bilinear", "nearest"),
            ),
            SpatialPadd(keys=["image", "label"], spatial_size=patch_size,
                        mode=["constant", "edge"]),
            NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True),
            RandSpatialCropd(keys=["image", "label"], roi_size=patch_size, random_size=False),
            SqueezeDimd(keys=["image", "label"], dim=-1),
            RandZoomd(
                keys=["image", "label"],
                min_zoom=0.9,
                max_zoom=1.2,
                mode=("bilinear", "nearest"),
                align_corners=(True, None),
                prob=0.16,
            ),
            RandRotated(keys=["image", "label"], range_x=90, range_y=90, prob=0.2,
                        keep_size=True, mode=["bilinear", "nearest"],
                        padding_mode=["zeros", "border"]),
            RandGaussianNoised(keys=["image"], std=0.01, prob=0.15),
            RandGaussianSmoothd(
                keys=["image"],
                sigma_x=(0.5, 1.15),
                sigma_y=(0.5, 1.15),
                sigma_z=(0.5, 1.15),
                prob=0.15,
            ),
            RandScaleIntensityd(keys=["image"], factors=0.3, prob=0.15),
            RandFlipd(["image", "label"], spatial_axis=[0, 1], prob=0.5),
            ToTensord(keys=["image", "label"]),
        ]
    )

    # Define MONAI processing transforms for the validation data
    # - Load Nifti files and convert to format Batch x Channel x Dim1 x Dim2 x Dim3
    # - CropForegroundd: Reduce the background from the MR image
    # - InPlaneSpacingd: Perform in-plane resampling to the desired spacing, but preserve the resolution along the
    #       last direction (lowest resolution) to avoid introducing motion artefact resampling errors
    # - SpatialPadd: Pad the in-plane size to the defined network input patch size [N, M] if needed
    # - NormalizeIntensityd: Apply whitening
    # - ToTensor: convert to pytorch tensor
    # NOTE: The validation data is kept 3D as a 2D sliding window approach is used throughout the volume at inference
    val_transforms = Compose(
        [
            LoadNiftid(keys=["image", "label"]),
            AddChanneld(keys=["image", "label"]),
            CropForegroundd(keys=["image", "label"], source_key="image"),
            InPlaneSpacingd(
                keys=["image", "label"],
                pixdim=spacing,
                mode=("bilinear", "nearest"),
            ),
            SpatialPadd(keys=["image", "label"], spatial_size=patch_size, mode=["constant", "edge"]),
            NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True),
            ToTensord(keys=["image", "label"]),
        ]
    )

    """
    Load data 
    """
    # create training data loader
    train_ds = PersistentDataset(data=train_files, transform=train_transforms,
                                 cache_dir=persistent_cache)
    train_loader = DataLoader(train_ds,
                              batch_size=config_info['training']['batch_size_train'],
                              shuffle=True,
                              num_workers=config_info['device']['num_workers'])
    check_train_data = misc.first(train_loader)
    print("Training data tensor shapes:")
    print("Image = {}; Label = {}".format(check_train_data["image"].shape, check_train_data["label"].shape))

    # create validation data loader
    if config_info['training']['batch_size_valid'] != 1:
        raise Exception("Batch size different from 1 at validation ar currently not supported")
    val_ds = PersistentDataset(data=val_files, transform=val_transforms, cache_dir=persistent_cache)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            shuffle=False,
                            num_workers=config_info['device']['num_workers'])
    check_valid_data = misc.first(val_loader)
    print("Validation data tensor shapes (Example):")
    print("Image = {}; Label = {}\n".format(check_valid_data["image"].shape, check_valid_data["label"].shape))

    """
    Network preparation
    """
    print("*** Preparing the network ...")
    # automatically extracts the strides and kernels based on nnU-Net empirical rules
    spacings = spacing[:2]
    sizes = patch_size[:2]
    strides, kernels = [], []
    while True:
        spacing_ratio = [sp / min(spacings) for sp in spacings]
        stride = [2 if ratio <= 2 and size >= 8 else 1 for (ratio, size) in zip(spacing_ratio, sizes)]
        kernel = [3 if ratio <= 2 else 1 for ratio in spacing_ratio]
        if all(s == 1 for s in stride):
            break
        sizes = [i / j for i, j in zip(sizes, stride)]
        spacings = [i * j for i, j in zip(spacings, stride)]
        kernels.append(kernel)
        strides.append(stride)
    strides.insert(0, len(spacings) * [1])
    kernels.append(len(spacings) * [3])

    # initialise the network
    net = DynUNet(
        spatial_dims=2,
        in_channels=1,
        out_channels=nr_out_channels,
        kernel_size=kernels,
        strides=strides,
        upsample_kernel_size=strides[1:],
        norm_name="instance",
        deep_supervision=True,
        deep_supr_num=2,
        res_block=False,
    ).to(current_device)
    print(net)

    # define the loss function
    loss_function = choose_loss_function(nr_out_channels, config_info)

    # define the optimiser and the learning rate scheduler
    opt = torch.optim.SGD(net.parameters(), lr=float(config_info['training']['lr']), momentum=0.95)
    scheduler = torch.optim.lr_scheduler.LambdaLR(
        opt, lr_lambda=lambda epoch: (1 - epoch / config_info['training']['nr_train_epochs']) ** 0.9
    )

    """
    MONAI evaluator
    """
    print("*** Preparing the dynUNet evaluator engine...\n")
    # val_post_transforms = Compose(
    #     [
    #         Activationsd(keys="pred", sigmoid=True),
    #     ]
    # )
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir=os.path.join(out_model_dir, "valid"),
                                output_transform=lambda x: None,
                                global_epoch_transform=lambda x: trainer.state.iteration),
        CheckpointSaver(save_dir=out_model_dir, save_dict={"net": net, "opt": opt}, save_key_metric=True,
                        file_prefix='best_valid'),
    ]
    if config_info['output']['val_image_to_tensorboad']:
        val_handlers.append(TensorBoardImageHandler(log_dir=os.path.join(out_model_dir, "valid"),
                                                    batch_transform=lambda x: (x["image"], x["label"]),
                                                    output_transform=lambda x: x["pred"], interval=2))

    # Define customized evaluator
    class DynUNetEvaluator(SupervisedEvaluator):
        def _iteration(self, engine, batchdata):
            inputs, targets = self.prepare_batch(batchdata)
            inputs, targets = inputs.to(engine.state.device), targets.to(engine.state.device)
            flip_inputs_1 = torch.flip(inputs, dims=(2,))
            flip_inputs_2 = torch.flip(inputs, dims=(3,))
            flip_inputs_3 = torch.flip(inputs, dims=(2, 3))

            def _compute_pred():
                pred = self.inferer(inputs, self.network)
                # use random flipping as data augmentation at inference
                flip_pred_1 = torch.flip(self.inferer(flip_inputs_1, self.network), dims=(2,))
                flip_pred_2 = torch.flip(self.inferer(flip_inputs_2, self.network), dims=(3,))
                flip_pred_3 = torch.flip(self.inferer(flip_inputs_3, self.network), dims=(2, 3))
                return (pred + flip_pred_1 + flip_pred_2 + flip_pred_3) / 4

            # execute forward computation
            self.network.eval()
            with torch.no_grad():
                if self.amp:
                    with torch.cuda.amp.autocast():
                        predictions = _compute_pred()
                else:
                    predictions = _compute_pred()
            return {"image": inputs, "label": targets, "pred": predictions}

    evaluator = DynUNetEvaluator(
        device=current_device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer2D(roi_size=patch_size, sw_batch_size=4, overlap=0.0),
        post_transform=None,
        key_val_metric={
            "Mean_dice": MeanDice(
                include_background=False,
                to_onehot_y=True,
                mutually_exclusive=True,
                output_transform=lambda x: (x["pred"], x["label"]),
            )
        },
        val_handlers=val_handlers,
        amp=False,
    )

    """
    MONAI trainer
    """
    print("*** Preparing the dynUNet trainer engine...\n")
    # train_post_transforms = Compose(
    #     [
    #         Activationsd(keys="pred", sigmoid=True),
    #     ]
    # )

    validation_every_n_epochs = config_info['training']['validation_every_n_epochs']
    epoch_len = len(train_ds) // train_loader.batch_size
    validation_every_n_iters = validation_every_n_epochs * epoch_len

    # define event handlers for the trainer
    writer_train = SummaryWriter(log_dir=os.path.join(out_model_dir, "train"))
    train_handlers = [
        LrScheduleHandler(lr_scheduler=scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=validation_every_n_iters, epoch_level=False),
        StatsHandler(tag_name="train_loss", output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(summary_writer=writer_train,
                                log_dir=os.path.join(out_model_dir, "train"), tag_name="Loss",
                                output_transform=lambda x: x["loss"],
                                global_epoch_transform=lambda x: trainer.state.iteration),
        CheckpointSaver(save_dir=out_model_dir, save_dict={"net": net, "opt": opt},
                        save_final=True,
                        save_interval=2, epoch_level=True,
                        n_saved=config_info['output']['max_nr_models_saved']),
    ]
    if model_to_load is not None:
        train_handlers.append(CheckpointLoader(load_path=model_to_load, load_dict={"net": net, "opt": opt}))

    # define customized trainer
    class DynUNetTrainer(SupervisedTrainer):
        def _iteration(self, engine, batchdata):
            inputs, targets = self.prepare_batch(batchdata)
            inputs, targets = inputs.to(engine.state.device), targets.to(engine.state.device)

            def _compute_loss(preds, label):
                labels = [label] + [interpolate(label, pred.shape[2:]) for pred in preds[1:]]
                return sum([0.5 ** i * self.loss_function(p, l) for i, (p, l) in enumerate(zip(preds, labels))])

            self.network.train()
            self.optimizer.zero_grad()
            if self.amp and self.scaler is not None:
                with torch.cuda.amp.autocast():
                    predictions = self.inferer(inputs, self.network)
                    loss = _compute_loss(predictions, targets)
                self.scaler.scale(loss).backward()
                self.scaler.step(self.optimizer)
                self.scaler.update()
            else:
                predictions = self.inferer(inputs, self.network)
                loss = _compute_loss(predictions, targets).mean()
                loss.backward()
                self.optimizer.step()
            return {"image": inputs, "label": targets, "pred": predictions, "loss": loss.item()}

    trainer = DynUNetTrainer(
        device=current_device,
        max_epochs=config_info['training']['nr_train_epochs'],
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss_function,
        inferer=SimpleInferer(),
        post_transform=None,
        key_train_metric=None,
        train_handlers=train_handlers,
        amp=False,
    )

    """
    Run training
    """
    print("*** Run training...")
    trainer.run()
    print("Done!")
def main(tempdir):
    config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

    # define transforms for image and segmentation
    imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
    segtrans = Compose([AddChannel(), ToTensor()])
    ds = ImageDataset(images,
                      segs,
                      transform=imtrans,
                      seg_transform=segtrans,
                      image_only=False)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    # define sliding window size and batch size for windows inference
    roi_size = (96, 96, 96)
    sw_batch_size = 4

    post_trans = Compose(
        [Activations(sigmoid=True),
         AsDiscrete(threshold_values=True)])

    def _sliding_window_processor(engine, batch):
        net.eval()
        with torch.no_grad():
            val_images, val_labels = batch[0].to(device), batch[1].to(device)
            seg_probs = sliding_window_inference(val_images, roi_size,
                                                 sw_batch_size, net)
            seg_probs = post_trans(seg_probs)
            return seg_probs, val_labels

    evaluator = Engine(_sliding_window_processor)

    # add evaluation metric to the evaluator engine
    MeanDice().attach(evaluator, "Mean_Dice")

    # StatsHandler prints loss at every iteration and print metrics at every epoch,
    # we don't need to print loss for evaluator, so just print metrics, user can also customize print functions
    val_stats_handler = StatsHandler(
        name="evaluator",
        output_transform=lambda x:
        None,  # no need to print loss value, so disable per iteration output
    )
    val_stats_handler.attach(evaluator)

    # for the array data format, assume the 3rd item of batch data is the meta_data
    file_saver = SegmentationSaver(
        output_dir="tempdir",
        output_ext=".nii.gz",
        output_postfix="seg",
        name="evaluator",
        batch_transform=lambda x: x[2],
        output_transform=lambda output: output[0],
    )
    file_saver.attach(evaluator)

    # the model was trained by "unet_training_array" example
    ckpt_saver = CheckpointLoader(
        load_path="./runs_array/net_checkpoint_100.pt", load_dict={"net": net})
    ckpt_saver.attach(evaluator)

    # sliding window inference for one image at every iteration
    loader = DataLoader(ds,
                        batch_size=1,
                        num_workers=1,
                        pin_memory=torch.cuda.is_available())
    state = evaluator.run(loader)
    print(state)
Esempio n. 21
0
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask pairs
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(5):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)
        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))
        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
    val_files = [{"image": img, "label": seg} for img, seg in zip(images, segs)]

    # model file path
    model_file = glob("./runs/net_key_metric*")[0]

    # define transforms for image and segmentation
    val_transforms = Compose(
        [
            LoadNiftid(keys=["image", "label"]),
            AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
            ScaleIntensityd(keys="image"),
            ToTensord(keys=["image", "label"]),
        ]
    )

    # create a validation data loader
    val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
    val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4)

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)

    val_post_transforms = Compose(
        [
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold_values=True),
            KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ]
    )
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        CheckpointLoader(load_path=model_file, load_dict={"net": net}),
        SegmentationSaver(
            output_dir="./runs/",
            batch_transform=lambda batch: batch["image_meta_dict"],
            output_transform=lambda output: output["pred"],
        ),
    ]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5),
        post_transform=val_post_transforms,
        key_val_metric={
            "val_mean_dice": MeanDice(include_background=True, output_transform=lambda x: (x["pred"], x["label"]))
        },
        additional_metrics={"val_acc": Accuracy(output_transform=lambda x: (x["pred"], x["label"]))},
        val_handlers=val_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP evaluation
        amp=True if monai.config.get_torch_version_tuple() >= (1, 6) else False,
    )
    evaluator.run()
Esempio n. 22
0
            device)
        seg_probs = sliding_window_inference(val_images, roi_size,
                                             sw_batch_size, net)
        return seg_probs, val_labels


evaluator = Engine(_sliding_window_processor)

# add evaluation metric to the evaluator engine
MeanDice(add_sigmoid=True, to_onehot_y=False).attach(evaluator, 'Mean_Dice')

# StatsHandler prints loss at every iteration and print metrics at every epoch,
# we don't need to print loss for evaluator, so just print metrics, user can also customize print functions
val_stats_handler = StatsHandler(
    name='evaluator',
    output_transform=lambda x:
    None  # no need to print loss value, so disable per iteration output
)
val_stats_handler.attach(evaluator)

# convert the necessary metadata from batch data
SegmentationSaver(
    output_dir='tempdir',
    output_ext='.nii.gz',
    output_postfix='seg',
    name='evaluator',
    batch_transform=lambda batch: {
        'filename_or_obj': batch['img.filename_or_obj'],
        'affine': batch['img.affine']
    },
    output_transform=lambda output: predict_segmentation(output[0])).attach(
Esempio n. 23
0
def run_training_test(root_dir, device="cuda:0"):
    real_images = sorted(glob(os.path.join(root_dir, "img*.nii.gz")))
    train_files = [{"reals": img} for img in zip(real_images)]

    # prepare real data
    train_transforms = Compose([
        LoadNiftid(keys=["reals"]),
        AsChannelFirstd(keys=["reals"]),
        ScaleIntensityd(keys=["reals"]),
        RandFlipd(keys=["reals"], prob=0.5),
        ToTensord(keys=["reals"]),
    ])
    train_ds = monai.data.CacheDataset(data=train_files,
                                       transform=train_transforms,
                                       cache_rate=0.5)
    train_loader = monai.data.DataLoader(train_ds,
                                         batch_size=2,
                                         shuffle=True,
                                         num_workers=4)

    learning_rate = 2e-4
    betas = (0.5, 0.999)
    real_label = 1
    fake_label = 0

    # create discriminator
    disc_net = Discriminator(in_shape=(1, 64, 64),
                             channels=(8, 16, 32, 64, 1),
                             strides=(2, 2, 2, 2, 1),
                             num_res_units=1,
                             kernel_size=5).to(device)
    disc_net.apply(normal_init)
    disc_opt = torch.optim.Adam(disc_net.parameters(),
                                learning_rate,
                                betas=betas)
    disc_loss_criterion = torch.nn.BCELoss()

    def discriminator_loss(gen_images, real_images):
        real = real_images.new_full((real_images.shape[0], 1), real_label)
        gen = gen_images.new_full((gen_images.shape[0], 1), fake_label)
        realloss = disc_loss_criterion(disc_net(real_images), real)
        genloss = disc_loss_criterion(disc_net(gen_images.detach()), gen)
        return torch.div(torch.add(realloss, genloss), 2)

    # create generator
    latent_size = 64
    gen_net = Generator(latent_shape=latent_size,
                        start_shape=(latent_size, 8, 8),
                        channels=[32, 16, 8, 1],
                        strides=[2, 2, 2, 1])
    gen_net.apply(normal_init)
    gen_net.conv.add_module("activation", torch.nn.Sigmoid())
    gen_net = gen_net.to(device)
    gen_opt = torch.optim.Adam(gen_net.parameters(),
                               learning_rate,
                               betas=betas)
    gen_loss_criterion = torch.nn.BCELoss()

    def generator_loss(gen_images):
        output = disc_net(gen_images)
        cats = output.new_full(output.shape, real_label)
        return gen_loss_criterion(output, cats)

    key_train_metric = None

    train_handlers = [
        StatsHandler(
            name="training_loss",
            output_transform=lambda x: {
                Keys.GLOSS: x[Keys.GLOSS],
                Keys.DLOSS: x[Keys.DLOSS]
            },
        ),
        TensorBoardStatsHandler(
            log_dir=root_dir,
            tag_name="training_loss",
            output_transform=lambda x: {
                Keys.GLOSS: x[Keys.GLOSS],
                Keys.DLOSS: x[Keys.DLOSS]
            },
        ),
        CheckpointSaver(save_dir=root_dir,
                        save_dict={
                            "g_net": gen_net,
                            "d_net": disc_net
                        },
                        save_interval=2,
                        epoch_level=True),
    ]

    disc_train_steps = 2
    num_epochs = 5

    trainer = GanTrainer(
        device,
        num_epochs,
        train_loader,
        gen_net,
        gen_opt,
        generator_loss,
        disc_net,
        disc_opt,
        discriminator_loss,
        d_train_steps=disc_train_steps,
        latent_shape=latent_size,
        key_train_metric=key_train_metric,
        train_handlers=train_handlers,
    )
    trainer.run()

    return trainer.state
Esempio n. 24
0
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # IXI dataset as a demo, downloadable from https://brain-development.org/ixi-dataset/
    images = [
        "/workspace/data/medical/ixi/IXI-T1/IXI314-IOP-0889-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI249-Guys-1072-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI609-HH-2600-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI173-HH-1590-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI020-Guys-0700-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI342-Guys-0909-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI134-Guys-0780-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI577-HH-2661-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI066-Guys-0731-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI130-HH-1528-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI607-Guys-1097-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI175-HH-1570-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI385-HH-2078-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI344-Guys-0905-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI409-Guys-0960-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI584-Guys-1129-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI253-HH-1694-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI092-HH-1436-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI574-IOP-1156-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI585-Guys-1130-T1.nii.gz",
    ]
    # 2 binary labels for gender classification: man and woman
    labels = np.array(
        [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0])
    train_files = [{
        "img": img,
        "label": label
    } for img, label in zip(images[:10], labels[:10])]
    val_files = [{
        "img": img,
        "label": label
    } for img, label in zip(images[-10:], labels[-10:])]

    # define transforms for image
    train_transforms = Compose([
        LoadNiftid(keys=["img"]),
        AddChanneld(keys=["img"]),
        ScaleIntensityd(keys=["img"]),
        Resized(keys=["img"], spatial_size=(96, 96, 96)),
        RandRotate90d(keys=["img"], prob=0.8, spatial_axes=[0, 2]),
        ToTensord(keys=["img"]),
    ])
    val_transforms = Compose([
        LoadNiftid(keys=["img"]),
        AddChanneld(keys=["img"]),
        ScaleIntensityd(keys=["img"]),
        Resized(keys=["img"], spatial_size=(96, 96, 96)),
        ToTensord(keys=["img"]),
    ])

    # define dataset, data loader
    check_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
    check_loader = DataLoader(check_ds,
                              batch_size=2,
                              num_workers=4,
                              pin_memory=torch.cuda.is_available())
    check_data = monai.utils.misc.first(check_loader)
    print(check_data["img"].shape, check_data["label"])

    # create DenseNet121, CrossEntropyLoss and Adam optimizer
    net = monai.networks.nets.densenet.densenet121(
        spatial_dims=3,
        in_channels=1,
        out_channels=2,
    )
    loss = torch.nn.CrossEntropyLoss()
    lr = 1e-5
    opt = torch.optim.Adam(net.parameters(), lr)
    device = torch.device("cuda:0")

    # Ignite trainer expects batch=(img, label) and returns output=loss at every iteration,
    # user can add output_transform to return other values, like: y_pred, y, etc.
    def prepare_batch(batch, device=None, non_blocking=False):

        return _prepare_batch((batch["img"], batch["label"]), device,
                              non_blocking)

    trainer = create_supervised_trainer(net,
                                        opt,
                                        loss,
                                        device,
                                        False,
                                        prepare_batch=prepare_batch)

    # adding checkpoint handler to save models (network params and optimizer stats) during training
    checkpoint_handler = ModelCheckpoint("./runs/",
                                         "net",
                                         n_saved=10,
                                         require_empty=False)
    trainer.add_event_handler(event_name=Events.EPOCH_COMPLETED,
                              handler=checkpoint_handler,
                              to_save={
                                  "net": net,
                                  "opt": opt
                              })

    # StatsHandler prints loss at every iteration and print metrics at every epoch,
    # we don't set metrics for trainer here, so just print loss, user can also customize print functions
    # and can use output_transform to convert engine.state.output if it's not loss value
    train_stats_handler = StatsHandler(name="trainer")
    train_stats_handler.attach(trainer)

    # TensorBoardStatsHandler plots loss at every iteration and plots metrics at every epoch, same as StatsHandler
    train_tensorboard_stats_handler = TensorBoardStatsHandler()
    train_tensorboard_stats_handler.attach(trainer)

    # set parameters for validation
    validation_every_n_epochs = 1

    metric_name = "Accuracy"
    # add evaluation metric to the evaluator engine
    val_metrics = {
        metric_name: Accuracy(),
        "AUC": ROCAUC(to_onehot_y=True, add_softmax=True)
    }
    # Ignite evaluator expects batch=(img, label) and returns output=(y_pred, y) at every iteration,
    # user can add output_transform to return other values
    evaluator = create_supervised_evaluator(net,
                                            val_metrics,
                                            device,
                                            True,
                                            prepare_batch=prepare_batch)

    # add stats event handler to print validation stats via evaluator
    val_stats_handler = StatsHandler(
        name="evaluator",
        output_transform=lambda x:
        None,  # no need to print loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch,
    )  # fetch global epoch number from trainer
    val_stats_handler.attach(evaluator)

    # add handler to record metrics to TensorBoard at every epoch
    val_tensorboard_stats_handler = TensorBoardStatsHandler(
        output_transform=lambda x:
        None,  # no need to plot loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch,
    )  # fetch global epoch number from trainer
    val_tensorboard_stats_handler.attach(evaluator)

    # add early stopping handler to evaluator
    early_stopper = EarlyStopping(
        patience=4,
        score_function=stopping_fn_from_metric(metric_name),
        trainer=trainer)
    evaluator.add_event_handler(event_name=Events.EPOCH_COMPLETED,
                                handler=early_stopper)

    # create a validation data loader
    val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
    val_loader = DataLoader(val_ds,
                            batch_size=2,
                            num_workers=4,
                            pin_memory=torch.cuda.is_available())

    @trainer.on(Events.EPOCH_COMPLETED(every=validation_every_n_epochs))
    def run_validation(engine):
        evaluator.run(val_loader)

    # create a training data loader
    train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
    train_loader = DataLoader(train_ds,
                              batch_size=2,
                              shuffle=True,
                              num_workers=4,
                              pin_memory=torch.cuda.is_available())

    train_epochs = 30
    state = trainer.run(train_loader, train_epochs)
def evaluate(args):
    if args.local_rank == 0 and not os.path.exists(args.dir):
        # create 16 random image, mask paris for evaluation
        print(f"generating synthetic data to {args.dir} (this may take a while)")
        os.makedirs(args.dir)
        # set random seed to generate same random data for every node
        np.random.seed(seed=0)
        for i in range(16):
            im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)
            n = nib.Nifti1Image(im, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"img{i:d}.nii.gz"))
            n = nib.Nifti1Image(seg, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"seg{i:d}.nii.gz"))

    # initialize the distributed evaluation process, every GPU runs in a process
    dist.init_process_group(backend="nccl", init_method="env://")

    images = sorted(glob(os.path.join(args.dir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(args.dir, "seg*.nii.gz")))
    val_files = [{"image": img, "label": seg} for img, seg in zip(images, segs)]

    # define transforms for image and segmentation
    val_transforms = Compose(
        [
            LoadImaged(keys=["image", "label"]),
            AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
            ScaleIntensityd(keys="image"),
            ToTensord(keys=["image", "label"]),
        ]
    )

    # create a evaluation data loader
    val_ds = Dataset(data=val_files, transform=val_transforms)
    # create a evaluation data sampler
    val_sampler = DistributedSampler(val_ds, shuffle=False)
    # sliding window inference need to input 1 image in every iteration
    val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=2, pin_memory=True, sampler=val_sampler)

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device(f"cuda:{args.local_rank}")
    torch.cuda.set_device(device)
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    # wrap the model with DistributedDataParallel module
    net = DistributedDataParallel(net, device_ids=[device])

    val_post_transforms = Compose(
        [
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold_values=True),
            KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ]
    )
    val_handlers = [
        CheckpointLoader(
            load_path="./runs/checkpoint_epoch=4.pt",
            load_dict={"net": net},
            # config mapping to expected GPU device
            map_location={"cuda:0": f"cuda:{args.local_rank}"},
        ),
    ]
    if dist.get_rank() == 0:
        logging.basicConfig(stream=sys.stdout, level=logging.INFO)
        val_handlers.extend(
            [
                StatsHandler(output_transform=lambda x: None),
                SegmentationSaver(
                    output_dir="./runs/",
                    batch_transform=lambda batch: batch["image_meta_dict"],
                    output_transform=lambda output: output["pred"],
                ),
            ]
        )

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5),
        post_transform=val_post_transforms,
        key_val_metric={
            "val_mean_dice": MeanDice(
                include_background=True,
                output_transform=lambda x: (x["pred"], x["label"]),
                device=device,
            )
        },
        additional_metrics={"val_acc": Accuracy(output_transform=lambda x: (x["pred"], x["label"]), device=device)},
        val_handlers=val_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP evaluation
        amp=True if monai.config.get_torch_version_tuple() >= (1, 6) else False,
    )
    evaluator.run()
    dist.destroy_process_group()
Esempio n. 26
0
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask paris
    tempdir = tempfile.mkdtemp()
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(40):
        im, seg = create_test_image_3d(128,
                                       128,
                                       128,
                                       num_seg_classes=1,
                                       channel_dim=-1)
        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"img{i:d}.nii.gz"))
        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
    train_files = [{
        Keys.IMAGE: img,
        Keys.LABEL: seg
    } for img, seg in zip(images[:20], segs[:20])]
    val_files = [{
        Keys.IMAGE: img,
        Keys.LABEL: seg
    } for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_transforms = Compose([
        LoadNiftid(keys=[Keys.IMAGE, Keys.LABEL]),
        AsChannelFirstd(keys=[Keys.IMAGE, Keys.LABEL], channel_dim=-1),
        ScaleIntensityd(keys=[Keys.IMAGE, Keys.LABEL]),
        RandCropByPosNegLabeld(keys=[Keys.IMAGE, Keys.LABEL],
                               label_key=Keys.LABEL,
                               size=[96, 96, 96],
                               pos=1,
                               neg=1,
                               num_samples=4),
        RandRotate90d(keys=[Keys.IMAGE, Keys.LABEL],
                      prob=0.5,
                      spatial_axes=[0, 2]),
        ToTensord(keys=[Keys.IMAGE, Keys.LABEL]),
    ])
    val_transforms = Compose([
        LoadNiftid(keys=[Keys.IMAGE, Keys.LABEL]),
        AsChannelFirstd(keys=[Keys.IMAGE, Keys.LABEL], channel_dim=-1),
        ScaleIntensityd(keys=[Keys.IMAGE, Keys.LABEL]),
        ToTensord(keys=[Keys.IMAGE, Keys.LABEL]),
    ])

    # create a training data loader
    train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = DataLoader(train_ds,
                              batch_size=2,
                              shuffle=True,
                              num_workers=4,
                              collate_fn=list_data_collate)
    # create a validation data loader
    val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            num_workers=4,
                            collate_fn=list_data_collate)

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda:0")
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(do_sigmoid=True)
    opt = torch.optim.Adam(net.parameters(), 1e-3)

    val_handlers = [StatsHandler(output_transform=lambda x: None)]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96),
                                     sw_batch_size=4,
                                     overlap=0.5),
        val_handlers=val_handlers,
        key_val_metric={
            "val_mean_dice":
            MeanDice(include_background=True,
                     add_sigmoid=True,
                     output_transform=lambda x: (x[Keys.PRED], x[Keys.LABEL]))
        },
        additional_metrics=None,
    )

    train_handlers = [
        ValidationHandler(validator=evaluator, interval=2, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x[Keys.INFO][Keys.LOSS]),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        train_handlers=train_handlers,
        amp=False,
        key_train_metric=None,
    )
    trainer.run()

    shutil.rmtree(tempdir)
Esempio n. 27
0
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)
    set_determinism(12345)
    device = torch.device("cuda:0")

    # load real data
    mednist_url = "https://www.dropbox.com/s/5wwskxctvcxiuea/MedNIST.tar.gz?dl=1"
    md5_value = "0bc7306e7427e00ad1c5526a6677552d"
    extract_dir = "data"
    tar_save_path = os.path.join(extract_dir, "MedNIST.tar.gz")
    download_and_extract(mednist_url, tar_save_path, extract_dir, md5_value)
    hand_dir = os.path.join(extract_dir, "MedNIST", "Hand")
    real_data = [{
        "hand": os.path.join(hand_dir, filename)
    } for filename in os.listdir(hand_dir)]

    # define real data transforms
    train_transforms = Compose([
        LoadPNGD(keys=["hand"]),
        AddChannelD(keys=["hand"]),
        ScaleIntensityD(keys=["hand"]),
        RandRotateD(keys=["hand"], range_x=15, prob=0.5, keep_size=True),
        RandFlipD(keys=["hand"], spatial_axis=0, prob=0.5),
        RandZoomD(keys=["hand"], min_zoom=0.9, max_zoom=1.1, prob=0.5),
        ToTensorD(keys=["hand"]),
    ])

    # create dataset and dataloader
    real_dataset = CacheDataset(real_data, train_transforms)
    batch_size = 300
    real_dataloader = DataLoader(real_dataset,
                                 batch_size=batch_size,
                                 shuffle=True,
                                 num_workers=10)

    # define function to process batchdata for input into discriminator
    def prepare_batch(batchdata):
        """
        Process Dataloader batchdata dict object and return image tensors for D Inferer
        """
        return batchdata["hand"]

    # define networks
    disc_net = Discriminator(in_shape=(1, 64, 64),
                             channels=(8, 16, 32, 64, 1),
                             strides=(2, 2, 2, 2, 1),
                             num_res_units=1,
                             kernel_size=5).to(device)

    latent_size = 64
    gen_net = Generator(latent_shape=latent_size,
                        start_shape=(latent_size, 8, 8),
                        channels=[32, 16, 8, 1],
                        strides=[2, 2, 2, 1])

    # initialize both networks
    disc_net.apply(normal_init)
    gen_net.apply(normal_init)

    # input images are scaled to [0,1] so enforce the same of generated outputs
    gen_net.conv.add_module("activation", torch.nn.Sigmoid())
    gen_net = gen_net.to(device)

    # create optimizers and loss functions
    learning_rate = 2e-4
    betas = (0.5, 0.999)
    disc_opt = torch.optim.Adam(disc_net.parameters(),
                                learning_rate,
                                betas=betas)
    gen_opt = torch.optim.Adam(gen_net.parameters(),
                               learning_rate,
                               betas=betas)

    disc_loss_criterion = torch.nn.BCELoss()
    gen_loss_criterion = torch.nn.BCELoss()
    real_label = 1
    fake_label = 0

    def discriminator_loss(gen_images, real_images):
        """
        The discriminator loss is calculated by comparing D
        prediction for real and generated images.

        """
        real = real_images.new_full((real_images.shape[0], 1), real_label)
        gen = gen_images.new_full((gen_images.shape[0], 1), fake_label)

        realloss = disc_loss_criterion(disc_net(real_images), real)
        genloss = disc_loss_criterion(disc_net(gen_images.detach()), gen)

        return (genloss + realloss) / 2

    def generator_loss(gen_images):
        """
        The generator loss is calculated by determining how realistic
        the discriminator classifies the generated images.

        """
        output = disc_net(gen_images)
        cats = output.new_full(output.shape, real_label)
        return gen_loss_criterion(output, cats)

    # initialize current run dir
    run_dir = "model_out"
    print("Saving model output to: %s " % run_dir)

    # create workflow handlers
    handlers = [
        StatsHandler(
            name="batch_training_loss",
            output_transform=lambda x: {
                Keys.GLOSS: x[Keys.GLOSS],
                Keys.DLOSS: x[Keys.DLOSS]
            },
        ),
        CheckpointSaver(
            save_dir=run_dir,
            save_dict={
                "g_net": gen_net,
                "d_net": disc_net
            },
            save_interval=10,
            save_final=True,
            epoch_level=True,
        ),
    ]

    # define key metric
    key_train_metric = None

    # create adversarial trainer
    disc_train_steps = 5
    num_epochs = 50

    trainer = GanTrainer(
        device,
        num_epochs,
        real_dataloader,
        gen_net,
        gen_opt,
        generator_loss,
        disc_net,
        disc_opt,
        discriminator_loss,
        d_prepare_batch=prepare_batch,
        d_train_steps=disc_train_steps,
        latent_shape=latent_size,
        key_train_metric=key_train_metric,
        train_handlers=handlers,
    )

    # run GAN training
    trainer.run()

    # Training completed, save a few random generated images.
    print("Saving trained generator sample output.")
    test_img_count = 10
    test_latents = make_latent(test_img_count, latent_size).to(device)
    fakes = gen_net(test_latents)
    for i, image in enumerate(fakes):
        filename = "gen-fake-final-%d.png" % (i)
        save_path = os.path.join(run_dir, filename)
        img_array = image[0].cpu().data.numpy()
        png_writer.write_png(img_array, save_path, scale=255)
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask paris
    tempdir = tempfile.mkdtemp()
    print('generating synthetic data to {} (this may take a while)'.format(tempdir))
    for i in range(40):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, 'im%i.nii.gz' % i))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, 'seg%i.nii.gz' % i))

    images = sorted(glob(os.path.join(tempdir, 'im*.nii.gz')))
    segs = sorted(glob(os.path.join(tempdir, 'seg*.nii.gz')))

    # define transforms for image and segmentation
    train_imtrans = Compose([
        ScaleIntensity(),
        AddChannel(),
        RandSpatialCrop((96, 96, 96), random_size=False),
        ToTensor()
    ])
    train_segtrans = Compose([
        AddChannel(),
        RandSpatialCrop((96, 96, 96), random_size=False),
        ToTensor()
    ])
    val_imtrans = Compose([
        ScaleIntensity(),
        AddChannel(),
        Resize((96, 96, 96)),
        ToTensor()
    ])
    val_segtrans = Compose([
        AddChannel(),
        Resize((96, 96, 96)),
        ToTensor()
    ])

    # define nifti dataset, data loader
    check_ds = NiftiDataset(images, segs, transform=train_imtrans, seg_transform=train_segtrans)
    check_loader = DataLoader(check_ds, batch_size=10, num_workers=2, pin_memory=torch.cuda.is_available())
    im, seg = monai.utils.misc.first(check_loader)
    print(im.shape, seg.shape)

    # create a training data loader
    train_ds = NiftiDataset(images[:20], segs[:20], transform=train_imtrans, seg_transform=train_segtrans)
    train_loader = DataLoader(train_ds, batch_size=5, shuffle=True, num_workers=8, pin_memory=torch.cuda.is_available())
    # create a validation data loader
    val_ds = NiftiDataset(images[-20:], segs[-20:], transform=val_imtrans, seg_transform=val_segtrans)
    val_loader = DataLoader(val_ds, batch_size=5, num_workers=8, pin_memory=torch.cuda.is_available())

    # create UNet, DiceLoss and Adam optimizer
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    )
    loss = monai.losses.DiceLoss(do_sigmoid=True)
    lr = 1e-3
    opt = torch.optim.Adam(net.parameters(), lr)
    device = torch.device('cuda:0')

    # ignite trainer expects batch=(img, seg) and returns output=loss at every iteration,
    # user can add output_transform to return other values, like: y_pred, y, etc.
    trainer = create_supervised_trainer(net, opt, loss, device, False)

    # adding checkpoint handler to save models (network params and optimizer stats) during training
    checkpoint_handler = ModelCheckpoint('./runs/', 'net', n_saved=10, require_empty=False)
    trainer.add_event_handler(event_name=Events.EPOCH_COMPLETED,
                              handler=checkpoint_handler,
                              to_save={'net': net, 'opt': opt})

    # StatsHandler prints loss at every iteration and print metrics at every epoch,
    # we don't set metrics for trainer here, so just print loss, user can also customize print functions
    # and can use output_transform to convert engine.state.output if it's not a loss value
    train_stats_handler = StatsHandler(name='trainer')
    train_stats_handler.attach(trainer)

    # TensorBoardStatsHandler plots loss at every iteration and plots metrics at every epoch, same as StatsHandler
    train_tensorboard_stats_handler = TensorBoardStatsHandler()
    train_tensorboard_stats_handler.attach(trainer)

    validation_every_n_epochs = 1
    # Set parameters for validation
    metric_name = 'Mean_Dice'
    # add evaluation metric to the evaluator engine
    val_metrics = {metric_name: MeanDice(add_sigmoid=True, to_onehot_y=False)}

    # ignite evaluator expects batch=(img, seg) and returns output=(y_pred, y) at every iteration,
    # user can add output_transform to return other values
    evaluator = create_supervised_evaluator(net, val_metrics, device, True)


    @trainer.on(Events.EPOCH_COMPLETED(every=validation_every_n_epochs))
    def run_validation(engine):
        evaluator.run(val_loader)


    # add early stopping handler to evaluator
    early_stopper = EarlyStopping(patience=4,
                                  score_function=stopping_fn_from_metric(metric_name),
                                  trainer=trainer)
    evaluator.add_event_handler(event_name=Events.EPOCH_COMPLETED, handler=early_stopper)

    # add stats event handler to print validation stats via evaluator
    val_stats_handler = StatsHandler(
        name='evaluator',
        output_transform=lambda x: None,  # no need to print loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch)  # fetch global epoch number from trainer
    val_stats_handler.attach(evaluator)

    # add handler to record metrics to TensorBoard at every validation epoch
    val_tensorboard_stats_handler = TensorBoardStatsHandler(
        output_transform=lambda x: None,  # no need to plot loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch)  # fetch global epoch number from trainer
    val_tensorboard_stats_handler.attach(evaluator)

    # add handler to draw the first image and the corresponding label and model output in the last batch
    # here we draw the 3D output as GIF format along Depth axis, at every validation epoch
    val_tensorboard_image_handler = TensorBoardImageHandler(
        batch_transform=lambda batch: (batch[0], batch[1]),
        output_transform=lambda output: predict_segmentation(output[0]),
        global_iter_transform=lambda x: trainer.state.epoch
    )
    evaluator.add_event_handler(event_name=Events.EPOCH_COMPLETED, handler=val_tensorboard_image_handler)

    train_epochs = 30
    state = trainer.run(train_loader, train_epochs)
    shutil.rmtree(tempdir)
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # IXI dataset as a demo, downloadable from https://brain-development.org/ixi-dataset/
    images = [
        "/workspace/data/medical/ixi/IXI-T1/IXI607-Guys-1097-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI175-HH-1570-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI385-HH-2078-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI344-Guys-0905-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI409-Guys-0960-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI584-Guys-1129-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI253-HH-1694-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI092-HH-1436-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI574-IOP-1156-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI585-Guys-1130-T1.nii.gz",
    ]
    # 2 binary labels for gender classification: man and woman
    labels = np.array([0, 0, 1, 0, 1, 0, 1, 0, 1, 0])
    val_files = [{"img": img, "label": label} for img, label in zip(images, labels)]

    # define transforms for image
    val_transforms = Compose(
        [
            LoadNiftid(keys=["img"]),
            AddChanneld(keys=["img"]),
            ScaleIntensityd(keys=["img"]),
            Resized(keys=["img"], spatial_size=(96, 96, 96)),
            ToTensord(keys=["img"]),
        ]
    )

    # create DenseNet121
    net = monai.networks.nets.densenet.densenet121(spatial_dims=3, in_channels=1, out_channels=2,)
    device = torch.device("cuda:0")

    def prepare_batch(batch, device=None, non_blocking=False):
        return _prepare_batch((batch["img"], batch["label"]), device, non_blocking)

    metric_name = "Accuracy"
    # add evaluation metric to the evaluator engine
    val_metrics = {metric_name: Accuracy()}
    # Ignite evaluator expects batch=(img, label) and returns output=(y_pred, y) at every iteration,
    # user can add output_transform to return other values
    evaluator = create_supervised_evaluator(net, val_metrics, device, True, prepare_batch=prepare_batch)

    # add stats event handler to print validation stats via evaluator
    val_stats_handler = StatsHandler(
        name="evaluator",
        output_transform=lambda x: None,  # no need to print loss value, so disable per iteration output
    )
    val_stats_handler.attach(evaluator)

    # for the array data format, assume the 3rd item of batch data is the meta_data
    prediction_saver = ClassificationSaver(
        output_dir="tempdir",
        name="evaluator",
        batch_transform=lambda batch: {"filename_or_obj": batch["img.filename_or_obj"]},
        output_transform=lambda output: output[0].argmax(1),
    )
    prediction_saver.attach(evaluator)

    # the model was trained by "densenet_training_dict" example
    CheckpointLoader(load_path="./runs/net_checkpoint_20.pth", load_dict={"net": net}).attach(evaluator)

    # create a validation data loader
    val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
    val_loader = DataLoader(val_ds, batch_size=2, num_workers=4, pin_memory=torch.cuda.is_available())

    state = evaluator.run(val_loader)
    print(state)
Esempio n. 30
0
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    ################################ DATASET ################################
    # create a temporary directory and 40 random image, mask pairs
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(40):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)
        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"img{i:d}.nii.gz"))
        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
    train_files = [{"image": img, "label": seg} for img, seg in zip(images[:20], segs[:20])]
    val_files = [{"image": img, "label": seg} for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_transforms = Compose(
        [
            LoadImaged(keys=["image", "label"]),
            AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
            ScaleIntensityd(keys="image"),
            RandCropByPosNegLabeld(
                keys=["image", "label"], label_key="label", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4
            ),
            RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=[0, 2]),
            ToTensord(keys=["image", "label"]),
        ]
    )
    val_transforms = Compose(
        [
            LoadImaged(keys=["image", "label"]),
            AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
            ScaleIntensityd(keys="image"),
            ToTensord(keys=["image", "label"]),
        ]
    )

    # create a training data loader
    train_ds = monai.data.CacheDataset(data=train_files, transform=train_transforms, cache_rate=0.5)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = monai.data.DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=4)
    # create a validation data loader
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0)
    val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4)
    ################################ DATASET ################################
    
    ################################ NETWORK ################################
    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    ################################ NETWORK ################################
    
    ################################ LOSS ################################    
    loss = monai.losses.DiceLoss(sigmoid=True)
    ################################ LOSS ################################
    
    ################################ OPT ################################
    opt = torch.optim.Adam(net.parameters(), 1e-3)
    ################################ OPT ################################
    
    ################################ LR ################################
    lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=2, gamma=0.1)
    ################################ LR ################################
    
    val_post_transforms = Compose(
        [
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold_values=True),
            KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ]
    )
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir="./runs/", output_transform=lambda x: None),
        TensorBoardImageHandler(
            log_dir="./runs/",
            batch_transform=lambda x: (x["image"], x["label"]),
            output_transform=lambda x: x["pred"],
        ),
        CheckpointSaver(save_dir="./runs/", save_dict={"net": net}, save_key_metric=True),
    ]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5),
        post_transform=val_post_transforms,
        key_val_metric={
            "val_mean_dice": MeanDice(include_background=True, output_transform=lambda x: (x["pred"], x["label"]))
        },
        additional_metrics={"val_acc": Accuracy(output_transform=lambda x: (x["pred"], x["label"]))},
        val_handlers=val_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP evaluation
        amp=True if monai.utils.get_torch_version_tuple() >= (1, 6) else False,
    )

    train_post_transforms = Compose(
        [
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold_values=True),
            KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ]
    )
    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=2, epoch_level=True),
        StatsHandler(tag_name="train_loss", output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(log_dir="./runs/", tag_name="train_loss", output_transform=lambda x: x["loss"]),
        CheckpointSaver(save_dir="./runs/", save_dict={"net": net, "opt": opt}, save_interval=2, epoch_level=True),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        post_transform=train_post_transforms,
        key_train_metric={"train_acc": Accuracy(output_transform=lambda x: (x["pred"], x["label"]))},
        train_handlers=train_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP training
        amp=True if monai.utils.get_torch_version_tuple() >= (1, 6) else False,
    )
    trainer.run()