Esempio n. 1
0
    def test_prob_map_generator(self, name, size):
        # set up dataset
        dataset = TestDataset(name, size)
        data_loader = DataLoader(dataset, batch_size=1)

        # set up engine
        def inference(enging, batch):
            pass

        engine = Engine(inference)

        # add ProbMapGenerator() to evaluator
        output_dir = os.path.join(os.path.dirname(__file__), "testing_data")
        prob_map_gen = ProbMapProducer(output_dir=output_dir)

        evaluator = TestEvaluator(torch.device("cpu:0"), data_loader, size, val_handlers=[prob_map_gen])

        # set up validation handler
        validation = ValidationHandler(evaluator, interval=1)
        validation.attach(engine)

        engine.run(data_loader)

        prob_map = np.load(os.path.join(output_dir, name + ".npy"))
        self.assertListEqual(np.diag(prob_map).astype(int).tolist(), list(range(1, size + 1)))
Esempio n. 2
0
    def train_handlers(self, context: Context):
        handlers: List[Any] = []

        # LR Scheduler
        lr_scheduler = self.lr_scheduler_handler(context)
        if lr_scheduler:
            handlers.append(lr_scheduler)

        if context.local_rank == 0:
            handlers.extend([
                StatsHandler(tag_name="train_loss",
                             output_transform=from_engine(["loss"],
                                                          first=True)),
                TensorBoardStatsHandler(
                    log_dir=context.events_dir,
                    tag_name="train_loss",
                    output_transform=from_engine(["loss"], first=True),
                ),
            ])

        if context.evaluator:
            logger.info(
                f"{context.local_rank} - Adding Validation to run every '{self._val_interval}' interval"
            )
            handlers.append(
                ValidationHandler(self._val_interval,
                                  validator=context.evaluator,
                                  epoch_level=True))

        return handlers
    def test_content(self):
        data = [0] * 8

        # set up engine
        def _train_func(engine, batch):
            pass

        engine = Engine(_train_func)

        # set up testing handler
        val_data_loader = torch.utils.data.DataLoader(Dataset(data))
        evaluator = TestEvaluator(torch.device("cpu:0"), val_data_loader)
        saver = ValidationHandler(interval=2, validator=evaluator)
        saver.attach(engine)

        engine.run(data, max_epochs=5)
        self.assertEqual(evaluator.state.max_epochs, 4)
        self.assertEqual(evaluator.state.epoch_length, 8)
Esempio n. 4
0
def train(args):
    # load hyper parameters
    task_id = args.task_id
    fold = args.fold
    val_output_dir = "./runs_{}_fold{}_{}/".format(task_id, fold,
                                                   args.expr_name)
    log_filename = "nnunet_task{}_fold{}.log".format(task_id, fold)
    log_filename = os.path.join(val_output_dir, log_filename)
    interval = args.interval
    learning_rate = args.learning_rate
    max_epochs = args.max_epochs
    multi_gpu_flag = args.multi_gpu
    amp_flag = args.amp
    lr_decay_flag = args.lr_decay
    sw_batch_size = args.sw_batch_size
    tta_val = args.tta_val
    batch_dice = args.batch_dice
    window_mode = args.window_mode
    eval_overlap = args.eval_overlap
    local_rank = args.local_rank
    determinism_flag = args.determinism_flag
    determinism_seed = args.determinism_seed
    if determinism_flag:
        set_determinism(seed=determinism_seed)
        if local_rank == 0:
            print("Using deterministic training.")

    # transforms
    train_batch_size = data_loader_params[task_id]["batch_size"]
    if multi_gpu_flag:
        dist.init_process_group(backend="nccl", init_method="env://")

        device = torch.device(f"cuda:{local_rank}")
        torch.cuda.set_device(device)
    else:
        device = torch.device("cuda")

    properties, val_loader = get_data(args, mode="validation")
    _, train_loader = get_data(args, batch_size=train_batch_size, mode="train")

    # produce the network
    checkpoint = args.checkpoint
    net = get_network(properties, task_id, val_output_dir, checkpoint)
    net = net.to(device)

    if multi_gpu_flag:
        net = DistributedDataParallel(module=net,
                                      device_ids=[device],
                                      find_unused_parameters=True)

    optimizer = torch.optim.SGD(
        net.parameters(),
        lr=learning_rate,
        momentum=0.99,
        weight_decay=3e-5,
        nesterov=True,
    )

    scheduler = torch.optim.lr_scheduler.LambdaLR(
        optimizer, lr_lambda=lambda epoch: (1 - epoch / max_epochs)**0.9)
    # produce evaluator
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        CheckpointSaver(save_dir=val_output_dir,
                        save_dict={"net": net},
                        save_key_metric=True),
    ]

    evaluator = DynUNetEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        n_classes=len(properties["labels"]),
        inferer=SlidingWindowInferer(
            roi_size=patch_size[task_id],
            sw_batch_size=sw_batch_size,
            overlap=eval_overlap,
            mode=window_mode,
        ),
        post_transform=None,
        key_val_metric={
            "val_mean_dice":
            MeanDice(
                include_background=False,
                output_transform=lambda x: (x["pred"], x["label"]),
            )
        },
        val_handlers=val_handlers,
        amp=amp_flag,
        tta_val=tta_val,
    )
    # produce trainer
    loss = DiceCELoss(to_onehot_y=True, softmax=True, batch=batch_dice)
    train_handlers = []
    if lr_decay_flag:
        train_handlers += [
            LrScheduleHandler(lr_scheduler=scheduler, print_lr=True)
        ]

    train_handlers += [
        ValidationHandler(validator=evaluator,
                          interval=interval,
                          epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
    ]

    trainer = DynUNetTrainer(
        device=device,
        max_epochs=max_epochs,
        train_data_loader=train_loader,
        network=net,
        optimizer=optimizer,
        loss_function=loss,
        inferer=SimpleInferer(),
        post_transform=None,
        key_train_metric=None,
        train_handlers=train_handlers,
        amp=amp_flag,
    )

    # run
    logger = logging.getLogger()

    formatter = logging.Formatter(
        "%(asctime)s - %(name)s - %(levelname)s - %(message)s")

    # Setup file handler
    fhandler = logging.FileHandler(log_filename)
    fhandler.setLevel(logging.INFO)
    fhandler.setFormatter(formatter)

    # Configure stream handler for the cells
    chandler = logging.StreamHandler()
    chandler.setLevel(logging.INFO)
    chandler.setFormatter(formatter)

    # Add both handlers
    if local_rank == 0:
        logger.addHandler(fhandler)
        logger.addHandler(chandler)
        logger.setLevel(logging.INFO)

    trainer.run()
Esempio n. 5
0
def run_training_test(root_dir, device="cuda:0", amp=False):
    images = sorted(glob(os.path.join(root_dir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz")))
    train_files = [{
        "image": img,
        "label": seg
    } for img, seg in zip(images[:20], segs[:20])]
    val_files = [{
        "image": img,
        "label": seg
    } for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_transforms = Compose([
        LoadNiftid(keys=["image", "label"]),
        AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
        ScaleIntensityd(keys=["image", "label"]),
        RandCropByPosNegLabeld(keys=["image", "label"],
                               label_key="label",
                               spatial_size=[96, 96, 96],
                               pos=1,
                               neg=1,
                               num_samples=4),
        RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=[0, 2]),
        ToTensord(keys=["image", "label"]),
    ])
    val_transforms = Compose([
        LoadNiftid(keys=["image", "label"]),
        AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
        ScaleIntensityd(keys=["image", "label"]),
        ToTensord(keys=["image", "label"]),
    ])

    # create a training data loader
    train_ds = monai.data.CacheDataset(data=train_files,
                                       transform=train_transforms,
                                       cache_rate=0.5)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = monai.data.DataLoader(train_ds,
                                         batch_size=2,
                                         shuffle=True,
                                         num_workers=4)
    # create a validation data loader
    val_ds = monai.data.CacheDataset(data=val_files,
                                     transform=val_transforms,
                                     cache_rate=1.0)
    val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4)

    # create UNet, DiceLoss and Adam optimizer
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(sigmoid=True)
    opt = torch.optim.Adam(net.parameters(), 1e-3)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=2, gamma=0.1)

    val_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
        KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
    ])
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir=root_dir,
                                output_transform=lambda x: None),
        TensorBoardImageHandler(log_dir=root_dir,
                                batch_transform=lambda x:
                                (x["image"], x["label"]),
                                output_transform=lambda x: x["pred"]),
        CheckpointSaver(save_dir=root_dir,
                        save_dict={"net": net},
                        save_key_metric=True),
    ]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96),
                                     sw_batch_size=4,
                                     overlap=0.5),
        post_transform=val_post_transforms,
        key_val_metric={
            "val_mean_dice":
            MeanDice(include_background=True,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        additional_metrics={
            "val_acc":
            Accuracy(output_transform=lambda x: (x["pred"], x["label"]))
        },
        val_handlers=val_handlers,
        amp=True if amp else False,
    )

    train_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
        KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
    ])
    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=2, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(log_dir=root_dir,
                                tag_name="train_loss",
                                output_transform=lambda x: x["loss"]),
        CheckpointSaver(save_dir=root_dir,
                        save_dict={
                            "net": net,
                            "opt": opt
                        },
                        save_interval=2,
                        epoch_level=True),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        post_transform=train_post_transforms,
        key_train_metric={
            "train_acc":
            Accuracy(output_transform=lambda x: (x["pred"], x["label"]))
        },
        train_handlers=train_handlers,
        amp=True if amp else False,
    )
    trainer.run()

    return evaluator.state.best_metric
Esempio n. 6
0
    def configure(self):
        self.set_device()
        network = UNet(
            dimensions=3,
            in_channels=1,
            out_channels=2,
            channels=(16, 32, 64, 128, 256),
            strides=(2, 2, 2, 2),
            num_res_units=2,
            norm=Norm.BATCH,
        ).to(self.device)
        if self.multi_gpu:
            network = DistributedDataParallel(
                module=network,
                device_ids=[self.device],
                find_unused_parameters=False,
            )

        train_transforms = Compose([
            LoadImaged(keys=("image", "label")),
            EnsureChannelFirstd(keys=("image", "label")),
            Spacingd(keys=("image", "label"),
                     pixdim=[1.0, 1.0, 1.0],
                     mode=["bilinear", "nearest"]),
            ScaleIntensityRanged(
                keys="image",
                a_min=-57,
                a_max=164,
                b_min=0.0,
                b_max=1.0,
                clip=True,
            ),
            CropForegroundd(keys=("image", "label"), source_key="image"),
            RandCropByPosNegLabeld(
                keys=("image", "label"),
                label_key="label",
                spatial_size=(96, 96, 96),
                pos=1,
                neg=1,
                num_samples=4,
                image_key="image",
                image_threshold=0,
            ),
            RandShiftIntensityd(keys="image", offsets=0.1, prob=0.5),
            ToTensord(keys=("image", "label")),
        ])
        train_datalist = load_decathlon_datalist(self.data_list_file_path,
                                                 True, "training")
        if self.multi_gpu:
            train_datalist = partition_dataset(
                data=train_datalist,
                shuffle=True,
                num_partitions=dist.get_world_size(),
                even_divisible=True,
            )[dist.get_rank()]
        train_ds = CacheDataset(
            data=train_datalist,
            transform=train_transforms,
            cache_num=32,
            cache_rate=1.0,
            num_workers=4,
        )
        train_data_loader = DataLoader(
            train_ds,
            batch_size=2,
            shuffle=True,
            num_workers=4,
        )
        val_transforms = Compose([
            LoadImaged(keys=("image", "label")),
            EnsureChannelFirstd(keys=("image", "label")),
            ScaleIntensityRanged(
                keys="image",
                a_min=-57,
                a_max=164,
                b_min=0.0,
                b_max=1.0,
                clip=True,
            ),
            CropForegroundd(keys=("image", "label"), source_key="image"),
            ToTensord(keys=("image", "label")),
        ])

        val_datalist = load_decathlon_datalist(self.data_list_file_path, True,
                                               "validation")
        val_ds = CacheDataset(val_datalist, val_transforms, 9, 0.0, 4)
        val_data_loader = DataLoader(
            val_ds,
            batch_size=1,
            shuffle=False,
            num_workers=4,
        )
        post_transform = Compose([
            Activationsd(keys="pred", softmax=True),
            AsDiscreted(
                keys=["pred", "label"],
                argmax=[True, False],
                to_onehot=True,
                n_classes=2,
            ),
        ])
        # metric
        key_val_metric = {
            "val_mean_dice":
            MeanDice(
                include_background=False,
                output_transform=lambda x: (x["pred"], x["label"]),
                device=self.device,
            )
        }
        val_handlers = [
            StatsHandler(output_transform=lambda x: None),
            CheckpointSaver(
                save_dir=self.ckpt_dir,
                save_dict={"model": network},
                save_key_metric=True,
            ),
            TensorBoardStatsHandler(log_dir=self.ckpt_dir,
                                    output_transform=lambda x: None),
        ]
        self.eval_engine = SupervisedEvaluator(
            device=self.device,
            val_data_loader=val_data_loader,
            network=network,
            inferer=SlidingWindowInferer(
                roi_size=[160, 160, 160],
                sw_batch_size=4,
                overlap=0.5,
            ),
            post_transform=post_transform,
            key_val_metric=key_val_metric,
            val_handlers=val_handlers,
            amp=self.amp,
        )

        optimizer = torch.optim.Adam(network.parameters(), self.learning_rate)
        loss_function = DiceLoss(to_onehot_y=True, softmax=True)
        lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                       step_size=5000,
                                                       gamma=0.1)
        train_handlers = [
            LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
            ValidationHandler(validator=self.eval_engine,
                              interval=self.val_interval,
                              epoch_level=True),
            StatsHandler(tag_name="train_loss",
                         output_transform=lambda x: x["loss"]),
            TensorBoardStatsHandler(
                log_dir=self.ckpt_dir,
                tag_name="train_loss",
                output_transform=lambda x: x["loss"],
            ),
        ]

        self.train_engine = SupervisedTrainer(
            device=self.device,
            max_epochs=self.max_epochs,
            train_data_loader=train_data_loader,
            network=network,
            optimizer=optimizer,
            loss_function=loss_function,
            inferer=SimpleInferer(),
            post_transform=post_transform,
            key_train_metric=None,
            train_handlers=train_handlers,
            amp=self.amp,
        )

        if self.local_rank > 0:
            self.train_engine.logger.setLevel(logging.WARNING)
            self.eval_engine.logger.setLevel(logging.WARNING)
Esempio n. 7
0
    network=net,
    inferer=get_inferer(),
    post_transform=val_post_transform,
    key_val_metric={
        "val_mean_dice":
        MeanDice(include_background=False,
                 output_transform=lambda x: (x["pred"], x["label"]))
    },
    val_handlers=val_handlers,
    amp=amp,
)

# %%
# evaluator as an event handler of the trainer
train_handlers = [
    ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
    StatsHandler(tag_name="train_loss", output_transform=lambda x: x["loss"]),
    MetricsSaver(save_dir=model_folder, metrics='*')
]
trainer = monai.engines.SupervisedTrainer(
    device=device,
    max_epochs=max_epochs,
    train_data_loader=train_loader,
    network=net,
    optimizer=opt,
    loss_function=DiceCELoss(),
    inferer=get_inferer(),
    key_train_metric=None,
    # key_train_metric={
    #         "train_mean_dice": MeanDice(include_background=False, output_transform=lambda x: (x["pred"], x["label"]))
    #     },
Esempio n. 8
0
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask paris
    tempdir = tempfile.mkdtemp()
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(40):
        im, seg = create_test_image_3d(128,
                                       128,
                                       128,
                                       num_seg_classes=1,
                                       channel_dim=-1)
        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"img{i:d}.nii.gz"))
        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
    train_files = [{
        Keys.IMAGE: img,
        Keys.LABEL: seg
    } for img, seg in zip(images[:20], segs[:20])]
    val_files = [{
        Keys.IMAGE: img,
        Keys.LABEL: seg
    } for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_transforms = Compose([
        LoadNiftid(keys=[Keys.IMAGE, Keys.LABEL]),
        AsChannelFirstd(keys=[Keys.IMAGE, Keys.LABEL], channel_dim=-1),
        ScaleIntensityd(keys=[Keys.IMAGE, Keys.LABEL]),
        RandCropByPosNegLabeld(keys=[Keys.IMAGE, Keys.LABEL],
                               label_key=Keys.LABEL,
                               size=[96, 96, 96],
                               pos=1,
                               neg=1,
                               num_samples=4),
        RandRotate90d(keys=[Keys.IMAGE, Keys.LABEL],
                      prob=0.5,
                      spatial_axes=[0, 2]),
        ToTensord(keys=[Keys.IMAGE, Keys.LABEL]),
    ])
    val_transforms = Compose([
        LoadNiftid(keys=[Keys.IMAGE, Keys.LABEL]),
        AsChannelFirstd(keys=[Keys.IMAGE, Keys.LABEL], channel_dim=-1),
        ScaleIntensityd(keys=[Keys.IMAGE, Keys.LABEL]),
        ToTensord(keys=[Keys.IMAGE, Keys.LABEL]),
    ])

    # create a training data loader
    train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = DataLoader(train_ds,
                              batch_size=2,
                              shuffle=True,
                              num_workers=4,
                              collate_fn=list_data_collate)
    # create a validation data loader
    val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            num_workers=4,
                            collate_fn=list_data_collate)

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda:0")
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(do_sigmoid=True)
    opt = torch.optim.Adam(net.parameters(), 1e-3)

    val_handlers = [StatsHandler(output_transform=lambda x: None)]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96),
                                     sw_batch_size=4,
                                     overlap=0.5),
        val_handlers=val_handlers,
        key_val_metric={
            "val_mean_dice":
            MeanDice(include_background=True,
                     add_sigmoid=True,
                     output_transform=lambda x: (x[Keys.PRED], x[Keys.LABEL]))
        },
        additional_metrics=None,
    )

    train_handlers = [
        ValidationHandler(validator=evaluator, interval=2, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x[Keys.INFO][Keys.LOSS]),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        train_handlers=train_handlers,
        amp=False,
        key_train_metric=None,
    )
    trainer.run()

    shutil.rmtree(tempdir)
Esempio n. 9
0
    def train(index):

        # ---------- Build the nn-Unet network ------------

        if opt.resolution is None:
            sizes, spacings = opt.patch_size, opt.spacing
        else:
            sizes, spacings = opt.patch_size, opt.resolution

        strides, kernels = [], []

        while True:
            spacing_ratio = [sp / min(spacings) for sp in spacings]
            stride = [
                2 if ratio <= 2 and size >= 8 else 1
                for (ratio, size) in zip(spacing_ratio, sizes)
            ]
            kernel = [3 if ratio <= 2 else 1 for ratio in spacing_ratio]
            if all(s == 1 for s in stride):
                break
            sizes = [i / j for i, j in zip(sizes, stride)]
            spacings = [i * j for i, j in zip(spacings, stride)]
            kernels.append(kernel)
            strides.append(stride)
        strides.insert(0, len(spacings) * [1])
        kernels.append(len(spacings) * [3])

        net = monai.networks.nets.DynUNet(
            spatial_dims=3,
            in_channels=opt.in_channels,
            out_channels=opt.out_channels,
            kernel_size=kernels,
            strides=strides,
            upsample_kernel_size=strides[1:],
            res_block=True,
            # act=act_type,
            # norm=Norm.BATCH,
        ).to(device)

        from torch.autograd import Variable
        from torchsummaryX import summary

        data = Variable(
            torch.randn(int(opt.batch_size), int(opt.in_channels),
                        int(opt.patch_size[0]), int(opt.patch_size[1]),
                        int(opt.patch_size[2]))).cuda()

        out = net(data)
        summary(net, data)
        print("out size: {}".format(out.size()))

        # if opt.preload is not None:
        #     net.load_state_dict(torch.load(opt.preload))

        # ---------- ------------------------ ------------

        optim = torch.optim.Adam(net.parameters(), lr=opt.lr)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
            optim, lr_lambda=lambda epoch: (1 - epoch / opt.epochs)**0.9)

        loss_function = monai.losses.DiceCELoss(sigmoid=True)

        val_post_transforms = Compose([
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold_values=True),
            # KeepLargestConnectedComponentd(keys="pred", applied_labels=[1])
        ])

        val_handlers = [
            StatsHandler(output_transform=lambda x: None),
            CheckpointSaver(save_dir="./runs/",
                            save_dict={"net": net},
                            save_key_metric=True),
        ]

        evaluator = SupervisedEvaluator(
            device=device,
            val_data_loader=val_loaders[index],
            network=net,
            inferer=SlidingWindowInferer(roi_size=opt.patch_size,
                                         sw_batch_size=opt.batch_size,
                                         overlap=0.5),
            post_transform=val_post_transforms,
            key_val_metric={
                "val_mean_dice":
                MeanDice(
                    include_background=True,
                    output_transform=lambda x: (x["pred"], x["label"]),
                )
            },
            val_handlers=val_handlers)

        train_post_transforms = Compose([
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold_values=True),
            # KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ])

        train_handlers = [
            ValidationHandler(validator=evaluator,
                              interval=5,
                              epoch_level=True),
            LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
            StatsHandler(tag_name="train_loss",
                         output_transform=lambda x: x["loss"]),
            CheckpointSaver(save_dir="./runs/",
                            save_dict={
                                "net": net,
                                "opt": optim
                            },
                            save_final=True,
                            epoch_level=True),
        ]

        trainer = SupervisedTrainer(
            device=device,
            max_epochs=opt.epochs,
            train_data_loader=train_loaders[index],
            network=net,
            optimizer=optim,
            loss_function=loss_function,
            inferer=SimpleInferer(),
            post_transform=train_post_transforms,
            amp=False,
            train_handlers=train_handlers,
        )
        trainer.run()
        return net
Esempio n. 10
0
def train(gpu, args):
    """run a training pipeline."""
    
    
    args.gpu = gpu
    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))
        
    if args.distributed:
        print('Setting up multiple GPUs')
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
            
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * args.ngpus_per_node + gpu
            print(args.rank)
        dist.init_process_group(
            backend=args.dist_backend,
            init_method=args.dist_url,
            world_size=args.world_size,
            rank=args.rank,
        )
        print('Done!')
    

    #========================================
    images = sorted(glob.glob(os.path.join(args.data_folder, "*_ct.nii.gz")))
    labels = sorted(glob.glob(os.path.join(args.data_folder, "*_seg.nii.gz")))
    logging.info(f"training: image/label ({len(images)}) folder: {args.data_folder}")

    amp = True  # auto. mixed precision
    keys = ("image", "label")
    
    #TODO
    is_one_hot = False  # whether the label has multiple channels to represent  multiple class
    
    train_frac, val_frac = 0.8, 0.2
    n_train = int(train_frac * len(images)) + 1
    n_val = min(len(images) - n_train, int(val_frac * len(images)))
    logging.info(f"training: train {n_train} val {n_val}, folder: {args.data_folder}")

    train_files = [{keys[0]: img, keys[1]: seg} for img, seg in zip(images[:n_train], labels[:n_train])]
    val_files = [{keys[0]: img, keys[1]: seg} for img, seg in zip(images[-n_val:], labels[-n_val:])]

    # create a training data loader
    logging.info(f"batch size {args.batch_size}")
    train_transforms = get_xforms("train", keys)
    train_ds = monai.data.CacheDataset(data=train_files, 
                                       transform=train_transforms, 
                                       cache_rate=args.cache_rate,
                                       num_workers=args.preprocessing_workers)
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset,
                                                                        num_replicas=args.world_size,
                                                                        rank=args.rank
        )
        train_loader = monai.data.DataLoader(
            train_ds,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.num_workers,
            pin_memory=torch.cuda.is_available(),
            sampler=train_sampler)    # 
    else:
        train_loader = monai.data.DataLoader(
            train_ds,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.num_workers,
            pin_memory=torch.cuda.is_available())
    
    # create a validation data loader
    val_transforms = get_xforms("val", keys)
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms)
    val_loader = monai.data.DataLoader(
        val_ds,
        batch_size=1,  # image-level batch to the sliding window method, not the window-level batch
        num_workers=args.num_workers,
        pin_memory=torch.cuda.is_available(),
    )

    # create BasicUNet, DiceLoss and Adam optimizer
    if args.distributed:
        print('Setting Up ')
        torch.cuda.set_device(args.gpu)
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        net.cuda(args.gpu)
        args.batch_size = int(args.batch_size / ngpus_per_node)
        args.val_batch_size = int(args.val_batch_size / ngpus_per_node)
        args.num_workers = int(
            (args.num_workers + ngpus_per_node - 1) / ngpus_per_node
        )
        net = torch.nn.parallel.DistributedDataParallel(
            net, device_ids=[args.gpu]
        )
    else:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        net = get_net().to(device)
        
    logging.info(f"epochs {args.max_epochs}, lr {args.lr}, momentum {args.momentum}")
    opt = torch.optim.Adam(net.parameters(), lr=args.lr)

    # create evaluator (to be used to measure model quality during training
    def pred_transform(y_pred):
        y_sigmoid = torch.sigmoid(y_pred)
        y_sigmoid = (y_sigmoid >= logit_thresh).float()
        return y_sigmoid
    
    logit_thresh = 0.5
    train_metric = MeanDice(
        include_background=False,
        device = device,
        output_transform=lambda x: (pred_transform(x["pred"]), x["label"]),
    )
    
    val_metric = MeanDice(
        include_background=False,
        device = device,
        output_transform=lambda x: (pred_transform(x["pred"]), x["label"]),
    )
    
        
    val_handlers = [
        ProgressBar(),
        CheckpointSaver(save_dir=args.model_folder, save_dict={'net': net, 
                                                               'optimizer': opt},
                        save_key_metric=True, key_metric_n_saved=3),
    ]
    evaluator = monai.engines.SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=get_inferer(),
        key_val_metric={"val_mean_dice": val_metric},
        val_handlers=val_handlers,
        amp=amp,
    )

    # evaluator as an event handler of the trainer
    train_handlers = [
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        StatsHandler(tag_name="train_loss", output_transform=lambda x: x["loss"]),
        LrScheduleHandler(BoundingExponentialLR(opt, gamma=args.gamma), 
                          print_lr=True, 
                          name='bounding_lr_scheduler', 
                          epoch_level=True,)
    ]
    
    trainer = monai.engines.SupervisedTrainer(
        device=device,
        max_epochs=args.max_epochs,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=DiceCELoss(),
        inferer=get_inferer(),
        key_train_metric={'train_mean_dice': train_metric},
        train_handlers=train_handlers,
        amp=amp,
    )
    trainer.run()
Esempio n. 11
0
def train(args):
    """run a training pipeline."""

    save_args_to_file(args, 'runs/')
    images = sorted(glob.glob(os.path.join(args.data_folder, "*_ct.nii.gz")))
    labels = sorted(glob.glob(os.path.join(args.data_folder, "*_seg.nii.gz")))
    logging.info(
        f"training: image/label ({len(images)}) folder: {args.data_folder}")

    amp = True  # auto. mixed precision
    keys = ("image", "label")

    #TODO
    is_one_hot = False  # whether the label has multiple channels to represent  multiple class

    train_frac, val_frac = 0.8, 0.2
    n_train = int(train_frac * len(images)) + 1
    n_val = min(len(images) - n_train, int(val_frac * len(images)))
    logging.info(
        f"training: train {n_train} val {n_val}, folder: {args.data_folder}")

    train_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[:n_train], labels[:n_train])]
    val_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[-n_val:], labels[-n_val:])]

    # create a training data loader
    logging.info(f"batch size {args.batch_size}")
    train_transforms = get_xforms(args, "train", keys)
    train_ds = monai.data.CacheDataset(data=train_files,
                                       transform=train_transforms,
                                       cache_rate=args.cache_rate,
                                       num_workers=args.preprocessing_workers)
    train_loader = monai.data.DataLoader(
        train_ds,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.num_workers,
        pin_memory=torch.cuda.is_available(),
    )

    # create a validation data loader
    val_transforms = get_xforms(args, "val", keys)
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms)
    val_loader = monai.data.DataLoader(
        val_ds,
        batch_size=
        1,  # image-level batch to the sliding window method, not the window-level batch
        num_workers=args.num_workers,
        pin_memory=torch.cuda.is_available(),
    )

    # create BasicUNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = get_net(args.n_classes).to(device)

    logging.info(
        f"epochs {args.max_epochs}, lr {args.lr}, momentum {args.momentum}")
    opt = torch.optim.Adam(net.parameters(), lr=args.lr)

    # create evaluator (to be used to measure model quality during training
    def pred_transform(y_pred):
        y_sigmoid = torch.sigmoid(y_pred)
        y_sigmoid = (y_sigmoid >= logit_thresh).float()
        return y_sigmoid

    logit_thresh = 0.5
    train_metric = MeanDice(
        include_background=False,
        device=device,
        output_transform=lambda x: (pred_transform(x["pred"]), x["label"]),
    )

    val_metric = MeanDice(
        include_background=False,
        device=device,
        output_transform=lambda x: (pred_transform(x["pred"]), x["label"]),
    )

    val_handlers = [
        ProgressBar(),
        CheckpointSaver(save_dir=args.model_folder,
                        save_dict={
                            'net': net,
                            'optimizer': opt
                        },
                        save_key_metric=True,
                        key_metric_n_saved=3),
    ]
    evaluator = monai.engines.SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=get_inferer(args),
        key_val_metric={"val_mean_dice": val_metric},
        val_handlers=val_handlers,
        amp=amp,
    )

    # evaluator as an event handler of the trainer
    train_handlers = [
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
        LrScheduleHandler(
            BoundingExponentialLR(opt,
                                  gamma=args.gamma,
                                  min_lr=args.min_lr,
                                  initial_lr=args.lr),
            print_lr=True,
            name='bounding_lr_scheduler',
            epoch_level=True,
        )
    ]

    trainer = monai.engines.SupervisedTrainer(
        device=device,
        max_epochs=args.max_epochs,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=DiceCELoss(),
        inferer=get_inferer(args),
        key_train_metric={'train_mean_dice': train_metric},
        train_handlers=train_handlers,
        amp=amp,
    )
    trainer.run()
Esempio n. 12
0
def train(cfg):
    log_dir = create_log_dir(cfg)
    device = set_device(cfg)
    # --------------------------------------------------------------------------
    # Data Loading and Preprocessing
    # --------------------------------------------------------------------------
    # __________________________________________________________________________
    # Build MONAI preprocessing
    train_preprocess = Compose([
        ToTensorD(keys="image"),
        TorchVisionD(keys="image",
                     name="ColorJitter",
                     brightness=64.0 / 255.0,
                     contrast=0.75,
                     saturation=0.25,
                     hue=0.04),
        ToNumpyD(keys="image"),
        RandFlipD(keys="image", prob=0.5),
        RandRotate90D(keys="image", prob=0.5),
        CastToTypeD(keys="image", dtype=np.float32),
        RandZoomD(keys="image", prob=0.5, min_zoom=0.9, max_zoom=1.1),
        ScaleIntensityRangeD(keys="image",
                             a_min=0.0,
                             a_max=255.0,
                             b_min=-1.0,
                             b_max=1.0),
        ToTensorD(keys=("image", "label")),
    ])
    valid_preprocess = Compose([
        CastToTypeD(keys="image", dtype=np.float32),
        ScaleIntensityRangeD(keys="image",
                             a_min=0.0,
                             a_max=255.0,
                             b_min=-1.0,
                             b_max=1.0),
        ToTensorD(keys=("image", "label")),
    ])
    # __________________________________________________________________________
    # Create MONAI dataset
    train_json_info_list = load_decathlon_datalist(
        data_list_file_path=cfg["dataset_json"],
        data_list_key="training",
        base_dir=cfg["data_root"],
    )
    valid_json_info_list = load_decathlon_datalist(
        data_list_file_path=cfg["dataset_json"],
        data_list_key="validation",
        base_dir=cfg["data_root"],
    )

    train_dataset = PatchWSIDataset(
        train_json_info_list,
        cfg["region_size"],
        cfg["grid_shape"],
        cfg["patch_size"],
        train_preprocess,
        image_reader_name="openslide" if cfg["use_openslide"] else "cuCIM",
    )
    valid_dataset = PatchWSIDataset(
        valid_json_info_list,
        cfg["region_size"],
        cfg["grid_shape"],
        cfg["patch_size"],
        valid_preprocess,
        image_reader_name="openslide" if cfg["use_openslide"] else "cuCIM",
    )

    # __________________________________________________________________________
    # DataLoaders
    train_dataloader = DataLoader(train_dataset,
                                  num_workers=cfg["num_workers"],
                                  batch_size=cfg["batch_size"],
                                  pin_memory=True)
    valid_dataloader = DataLoader(valid_dataset,
                                  num_workers=cfg["num_workers"],
                                  batch_size=cfg["batch_size"],
                                  pin_memory=True)

    # __________________________________________________________________________
    # Get sample batch and some info
    first_sample = first(train_dataloader)
    if first_sample is None:
        raise ValueError("Fist sample is None!")

    print("image: ")
    print("    shape", first_sample["image"].shape)
    print("    type: ", type(first_sample["image"]))
    print("    dtype: ", first_sample["image"].dtype)
    print("labels: ")
    print("    shape", first_sample["label"].shape)
    print("    type: ", type(first_sample["label"]))
    print("    dtype: ", first_sample["label"].dtype)
    print(f"batch size: {cfg['batch_size']}")
    print(f"train number of batches: {len(train_dataloader)}")
    print(f"valid number of batches: {len(valid_dataloader)}")

    # --------------------------------------------------------------------------
    # Deep Learning Classification Model
    # --------------------------------------------------------------------------
    # __________________________________________________________________________
    # initialize model
    model = TorchVisionFCModel("resnet18",
                               num_classes=1,
                               use_conv=True,
                               pretrained=cfg["pretrain"])
    model = model.to(device)

    # loss function
    loss_func = torch.nn.BCEWithLogitsLoss()
    loss_func = loss_func.to(device)

    # optimizer
    if cfg["novograd"]:
        optimizer = Novograd(model.parameters(), cfg["lr"])
    else:
        optimizer = SGD(model.parameters(), lr=cfg["lr"], momentum=0.9)

    # AMP scaler
    if cfg["amp"]:
        cfg["amp"] = True if monai.utils.get_torch_version_tuple() >= (
            1, 6) else False
    else:
        cfg["amp"] = False

    scheduler = lr_scheduler.CosineAnnealingLR(optimizer,
                                               T_max=cfg["n_epochs"])

    # --------------------------------------------
    # Ignite Trainer/Evaluator
    # --------------------------------------------
    # Evaluator
    val_handlers = [
        CheckpointSaver(save_dir=log_dir,
                        save_dict={"net": model},
                        save_key_metric=True),
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir=log_dir,
                                output_transform=lambda x: None),
    ]
    val_postprocessing = Compose([
        ActivationsD(keys="pred", sigmoid=True),
        AsDiscreteD(keys="pred", threshold=0.5)
    ])
    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=valid_dataloader,
        network=model,
        postprocessing=val_postprocessing,
        key_val_metric={
            "val_acc":
            Accuracy(output_transform=from_engine(["pred", "label"]))
        },
        val_handlers=val_handlers,
        amp=cfg["amp"],
    )

    # Trainer
    train_handlers = [
        LrScheduleHandler(lr_scheduler=scheduler, print_lr=True),
        CheckpointSaver(save_dir=cfg["logdir"],
                        save_dict={
                            "net": model,
                            "opt": optimizer
                        },
                        save_interval=1,
                        epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=from_engine(["loss"], first=True)),
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        TensorBoardStatsHandler(log_dir=cfg["logdir"],
                                tag_name="train_loss",
                                output_transform=from_engine(["loss"],
                                                             first=True)),
    ]
    train_postprocessing = Compose([
        ActivationsD(keys="pred", sigmoid=True),
        AsDiscreteD(keys="pred", threshold=0.5)
    ])

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=cfg["n_epochs"],
        train_data_loader=train_dataloader,
        network=model,
        optimizer=optimizer,
        loss_function=loss_func,
        postprocessing=train_postprocessing,
        key_train_metric={
            "train_acc":
            Accuracy(output_transform=from_engine(["pred", "label"]))
        },
        train_handlers=train_handlers,
        amp=cfg["amp"],
    )
    trainer.run()
Esempio n. 13
0
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    ################################ DATASET ################################
    # get dataset
    train_ds = CacheDataset(data=train_files,
                            transform=train_transforms,
                            cache_rate=0.5)
    train_loader = DataLoader(train_ds,
                              batch_size=2,
                              shuffle=True,
                              num_workers=4)
    val_ds = CacheDataset(data=val_files,
                          transform=val_transforms,
                          cache_rate=1.0)
    val_loader = DataLoader(val_ds, batch_size=1, num_workers=4)
    ################################ DATASET ################################

    ################################ NETWORK ################################
    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    ################################ NETWORK ################################

    ################################ LOSS ################################
    loss = monai.losses.DiceLoss(sigmoid=True)
    ################################ LOSS ################################

    ################################ OPT ################################
    opt = torch.optim.Adam(net.parameters(), 1e-3)
    ################################ OPT ################################

    ################################ LR ################################
    lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=2, gamma=0.1)
    ################################ LR ################################

    ################################ Evalutaion ################################
    val_post_transforms = ...
    val_handlers = ...
    evaluator = ...

    train_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
        KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
    ])
    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=2, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(log_dir="./runs/",
                                tag_name="train_loss",
                                output_transform=lambda x: x["loss"]),
        CheckpointSaver(save_dir="./runs/",
                        save_dict={
                            "net": net,
                            "opt": opt
                        },
                        save_interval=2,
                        epoch_level=True),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        post_transform=train_post_transforms,
        key_train_metric={
            "train_acc":
            Accuracy(output_transform=lambda x: (x["pred"], x["label"]))
        },
        train_handlers=train_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP training
        amp=True if monai.utils.get_torch_version_tuple() >= (1, 6) else False,
    )
    trainer.run()
def run_training_test(root_dir, device="cuda:0", amp=False, num_workers=4):
    images = sorted(glob(os.path.join(root_dir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(root_dir, "seg*.nii.gz")))
    train_files = [{"image": img, "label": seg} for img, seg in zip(images[:20], segs[:20])]
    val_files = [{"image": img, "label": seg} for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_transforms = Compose(
        [
            LoadImaged(keys=["image", "label"]),
            AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
            ScaleIntensityd(keys=["image", "label"]),
            RandCropByPosNegLabeld(
                keys=["image", "label"], label_key="label", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4
            ),
            RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=[0, 2]),
            ToTensord(keys=["image", "label"]),
        ]
    )
    val_transforms = Compose(
        [
            LoadImaged(keys=["image", "label"]),
            AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
            ScaleIntensityd(keys=["image", "label"]),
            ToTensord(keys=["image", "label"]),
        ]
    )

    # create a training data loader
    train_ds = monai.data.CacheDataset(data=train_files, transform=train_transforms, cache_rate=0.5)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = monai.data.DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=num_workers)
    # create a validation data loader
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0)
    val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=num_workers)

    # create UNet, DiceLoss and Adam optimizer
    net = monai.networks.nets.UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(sigmoid=True)
    opt = torch.optim.Adam(net.parameters(), 1e-3)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=2, gamma=0.1)
    summary_writer = SummaryWriter(log_dir=root_dir)

    val_postprocessing = Compose(
        [
            ToTensord(keys=["pred", "label"]),
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold=0.5),
            KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ]
    )

    class _TestEvalIterEvents:
        def attach(self, engine):
            engine.add_event_handler(IterationEvents.FORWARD_COMPLETED, self._forward_completed)

        def _forward_completed(self, engine):
            pass

    val_handlers = [
        StatsHandler(iteration_log=False),
        TensorBoardStatsHandler(summary_writer=summary_writer, iteration_log=False),
        TensorBoardImageHandler(
            log_dir=root_dir, batch_transform=from_engine(["image", "label"]), output_transform=from_engine("pred")
        ),
        CheckpointSaver(save_dir=root_dir, save_dict={"net": net}, save_key_metric=True),
        _TestEvalIterEvents(),
    ]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5),
        postprocessing=val_postprocessing,
        key_val_metric={
            "val_mean_dice": MeanDice(include_background=True, output_transform=from_engine(["pred", "label"]))
        },
        additional_metrics={"val_acc": Accuracy(output_transform=from_engine(["pred", "label"]))},
        metric_cmp_fn=lambda cur, prev: cur >= prev,  # if greater or equal, treat as new best metric
        val_handlers=val_handlers,
        amp=bool(amp),
        to_kwargs={"memory_format": torch.preserve_format},
        amp_kwargs={"dtype": torch.float16 if bool(amp) else torch.float32},
    )

    train_postprocessing = Compose(
        [
            ToTensord(keys=["pred", "label"]),
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold=0.5),
            KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ]
    )

    class _TestTrainIterEvents:
        def attach(self, engine):
            engine.add_event_handler(IterationEvents.FORWARD_COMPLETED, self._forward_completed)
            engine.add_event_handler(IterationEvents.LOSS_COMPLETED, self._loss_completed)
            engine.add_event_handler(IterationEvents.BACKWARD_COMPLETED, self._backward_completed)
            engine.add_event_handler(IterationEvents.MODEL_COMPLETED, self._model_completed)

        def _forward_completed(self, engine):
            pass

        def _loss_completed(self, engine):
            pass

        def _backward_completed(self, engine):
            pass

        def _model_completed(self, engine):
            pass

    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=2, epoch_level=True),
        StatsHandler(tag_name="train_loss", output_transform=from_engine("loss", first=True)),
        TensorBoardStatsHandler(
            summary_writer=summary_writer, tag_name="train_loss", output_transform=from_engine("loss", first=True)
        ),
        CheckpointSaver(save_dir=root_dir, save_dict={"net": net, "opt": opt}, save_interval=2, epoch_level=True),
        _TestTrainIterEvents(),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        postprocessing=train_postprocessing,
        key_train_metric={"train_acc": Accuracy(output_transform=from_engine(["pred", "label"]))},
        train_handlers=train_handlers,
        amp=bool(amp),
        optim_set_to_none=True,
        to_kwargs={"memory_format": torch.preserve_format},
        amp_kwargs={"dtype": torch.float16 if bool(amp) else torch.float32},
    )
    trainer.run()

    return evaluator.state.best_metric
Esempio n. 15
0
def train(data_folder=".", model_folder="runs"):
    """run a training pipeline."""

    images = sorted(glob.glob(os.path.join(data_folder, "*_ct.nii.gz")))
    labels = sorted(glob.glob(os.path.join(data_folder, "*_seg.nii.gz")))
    logging.info(
        f"training: image/label ({len(images)}) folder: {data_folder}")

    amp = True  # auto. mixed precision
    keys = ("image", "label")
    train_frac, val_frac = 0.8, 0.2
    n_train = int(train_frac * len(images)) + 1
    n_val = min(len(images) - n_train, int(val_frac * len(images)))
    logging.info(
        f"training: train {n_train} val {n_val}, folder: {data_folder}")

    train_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[:n_train], labels[:n_train])]
    val_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[-n_val:], labels[-n_val:])]

    # create a training data loader
    batch_size = 2
    logging.info(f"batch size {batch_size}")
    train_transforms = get_xforms("train", keys)
    train_ds = monai.data.CacheDataset(data=train_files,
                                       transform=train_transforms)
    train_loader = monai.data.DataLoader(
        train_ds,
        batch_size=batch_size,
        shuffle=True,
        num_workers=2,
        pin_memory=torch.cuda.is_available(),
    )

    # create a validation data loader
    val_transforms = get_xforms("val", keys)
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms)
    val_loader = monai.data.DataLoader(
        val_ds,
        batch_size=
        1,  # image-level batch to the sliding window method, not the window-level batch
        num_workers=2,
        pin_memory=torch.cuda.is_available(),
    )

    # create BasicUNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = get_net().to(device)
    max_epochs, lr, momentum = 500, 1e-4, 0.95
    logging.info(f"epochs {max_epochs}, lr {lr}, momentum {momentum}")
    opt = torch.optim.Adam(net.parameters(), lr=lr)

    # create evaluator (to be used to measure model quality during training
    val_post_transform = monai.transforms.Compose([
        AsDiscreted(keys=("pred", "label"),
                    argmax=(True, False),
                    to_onehot=True,
                    n_classes=2)
    ])
    val_handlers = [
        ProgressBar(),
        CheckpointSaver(save_dir=model_folder,
                        save_dict={"net": net},
                        save_key_metric=True,
                        key_metric_n_saved=3),
    ]
    evaluator = monai.engines.SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=get_inferer(),
        post_transform=val_post_transform,
        key_val_metric={
            "val_mean_dice":
            MeanDice(include_background=False,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        val_handlers=val_handlers,
        amp=amp,
    )

    # evaluator as an event handler of the trainer
    train_handlers = [
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
    ]
    trainer = monai.engines.SupervisedTrainer(
        device=device,
        max_epochs=max_epochs,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=DiceCELoss(),
        inferer=get_inferer(),
        key_train_metric=None,
        train_handlers=train_handlers,
        amp=amp,
    )
    trainer.run()
Esempio n. 16
0
def create_trainer(args):
    set_determinism(seed=args.seed)

    multi_gpu = args.multi_gpu
    local_rank = args.local_rank
    if multi_gpu:
        dist.init_process_group(backend="nccl", init_method="env://")
        device = torch.device("cuda:{}".format(local_rank))
        torch.cuda.set_device(device)
    else:
        device = torch.device("cuda" if args.use_gpu else "cpu")

    pre_transforms = get_pre_transforms(args.roi_size, args.model_size,
                                        args.dimensions)
    click_transforms = get_click_transforms()
    post_transform = get_post_transforms()

    train_loader, val_loader = get_loaders(args, pre_transforms)

    # define training components
    network = get_network(args.network, args.channels,
                          args.dimensions).to(device)
    if multi_gpu:
        network = torch.nn.parallel.DistributedDataParallel(
            network, device_ids=[local_rank], output_device=local_rank)

    if args.resume:
        logging.info('{}:: Loading Network...'.format(local_rank))
        map_location = {"cuda:0": "cuda:{}".format(local_rank)}
        network.load_state_dict(
            torch.load(args.model_filepath, map_location=map_location))

    # define event-handlers for engine
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir=args.output,
                                output_transform=lambda x: None),
        DeepgrowStatsHandler(log_dir=args.output,
                             tag_name='val_dice',
                             image_interval=args.image_interval),
        CheckpointSaver(save_dir=args.output,
                        save_dict={"net": network},
                        save_key_metric=True,
                        save_final=True,
                        save_interval=args.save_interval,
                        final_filename='model.pt')
    ]
    val_handlers = val_handlers if local_rank == 0 else None

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=network,
        iteration_update=Interaction(
            transforms=click_transforms,
            max_interactions=args.max_val_interactions,
            key_probability='probability',
            train=False),
        inferer=SimpleInferer(),
        post_transform=post_transform,
        key_val_metric={
            "val_dice":
            MeanDice(include_background=False,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        val_handlers=val_handlers)

    loss_function = DiceLoss(sigmoid=True, squared_pred=True)
    optimizer = torch.optim.Adam(network.parameters(), args.learning_rate)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=5000,
                                                   gamma=0.1)

    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator,
                          interval=args.val_freq,
                          epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(log_dir=args.output,
                                tag_name="train_loss",
                                output_transform=lambda x: x["loss"]),
        CheckpointSaver(save_dir=args.output,
                        save_dict={
                            "net": network,
                            "opt": optimizer,
                            "lr": lr_scheduler
                        },
                        save_interval=args.save_interval * 2,
                        save_final=True,
                        final_filename='checkpoint.pt'),
    ]
    train_handlers = train_handlers if local_rank == 0 else train_handlers[:2]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=args.epochs,
        train_data_loader=train_loader,
        network=network,
        iteration_update=Interaction(
            transforms=click_transforms,
            max_interactions=args.max_train_interactions,
            key_probability='probability',
            train=True),
        optimizer=optimizer,
        loss_function=loss_function,
        inferer=SimpleInferer(),
        post_transform=post_transform,
        amp=args.amp,
        key_train_metric={
            "train_dice":
            MeanDice(include_background=False,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        train_handlers=train_handlers,
    )
    return trainer
Esempio n. 17
0
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    ################################ DATASET ################################
    # create a temporary directory and 40 random image, mask pairs
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(40):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)
        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"img{i:d}.nii.gz"))
        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
    train_files = [{"image": img, "label": seg} for img, seg in zip(images[:20], segs[:20])]
    val_files = [{"image": img, "label": seg} for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_transforms = Compose(
        [
            LoadImaged(keys=["image", "label"]),
            AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
            ScaleIntensityd(keys="image"),
            RandCropByPosNegLabeld(
                keys=["image", "label"], label_key="label", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4
            ),
            RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=[0, 2]),
            ToTensord(keys=["image", "label"]),
        ]
    )
    val_transforms = Compose(
        [
            LoadImaged(keys=["image", "label"]),
            AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
            ScaleIntensityd(keys="image"),
            ToTensord(keys=["image", "label"]),
        ]
    )

    # create a training data loader
    train_ds = monai.data.CacheDataset(data=train_files, transform=train_transforms, cache_rate=0.5)
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = monai.data.DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=4)
    # create a validation data loader
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0)
    val_loader = monai.data.DataLoader(val_ds, batch_size=1, num_workers=4)
    ################################ DATASET ################################
    
    ################################ NETWORK ################################
    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    ################################ NETWORK ################################
    
    ################################ LOSS ################################    
    loss = monai.losses.DiceLoss(sigmoid=True)
    ################################ LOSS ################################
    
    ################################ OPT ################################
    opt = torch.optim.Adam(net.parameters(), 1e-3)
    ################################ OPT ################################
    
    ################################ LR ################################
    lr_scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=2, gamma=0.1)
    ################################ LR ################################
    
    val_post_transforms = Compose(
        [
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold_values=True),
            KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ]
    )
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir="./runs/", output_transform=lambda x: None),
        TensorBoardImageHandler(
            log_dir="./runs/",
            batch_transform=lambda x: (x["image"], x["label"]),
            output_transform=lambda x: x["pred"],
        ),
        CheckpointSaver(save_dir="./runs/", save_dict={"net": net}, save_key_metric=True),
    ]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer(roi_size=(96, 96, 96), sw_batch_size=4, overlap=0.5),
        post_transform=val_post_transforms,
        key_val_metric={
            "val_mean_dice": MeanDice(include_background=True, output_transform=lambda x: (x["pred"], x["label"]))
        },
        additional_metrics={"val_acc": Accuracy(output_transform=lambda x: (x["pred"], x["label"]))},
        val_handlers=val_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP evaluation
        amp=True if monai.utils.get_torch_version_tuple() >= (1, 6) else False,
    )

    train_post_transforms = Compose(
        [
            Activationsd(keys="pred", sigmoid=True),
            AsDiscreted(keys="pred", threshold_values=True),
            KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
        ]
    )
    train_handlers = [
        LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=2, epoch_level=True),
        StatsHandler(tag_name="train_loss", output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(log_dir="./runs/", tag_name="train_loss", output_transform=lambda x: x["loss"]),
        CheckpointSaver(save_dir="./runs/", save_dict={"net": net, "opt": opt}, save_interval=2, epoch_level=True),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        inferer=SimpleInferer(),
        post_transform=train_post_transforms,
        key_train_metric={"train_acc": Accuracy(output_transform=lambda x: (x["pred"], x["label"]))},
        train_handlers=train_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP training
        amp=True if monai.utils.get_torch_version_tuple() >= (1, 6) else False,
    )
    trainer.run()
Esempio n. 18
0
def train(data_folder=".", model_folder="runs", continue_training=False):
    """run a training pipeline."""

    #/== files for synthesis
    path_parent = Path(
        '/content/drive/My Drive/Datasets/covid19/COVID-19-20_augs_cea/')
    path_synthesis = Path(
        path_parent /
        'CeA_BASE_grow=1_bg=-1.00_step=-1.0_scale=-1.0_seed=1.0_ch0_1=-1_ch1_16=-1_ali_thr=0.1'
    )
    scans_syns = os.listdir(path_synthesis)
    decreasing_sequence = get_decreasing_sequence(255, splits=20)
    keys2 = ("image", "label", "synthetic_lesion")
    # READ THE SYTHETIC HEALTHY TEXTURE
    path_synthesis_old = '/content/drive/My Drive/Datasets/covid19/results/cea_synthesis/patient0/'
    texture_orig = np.load(f'{path_synthesis_old}texture.npy.npz')
    texture_orig = texture_orig.f.arr_0
    texture = texture_orig + np.abs(np.min(texture_orig)) + .07
    texture = np.pad(texture, ((100, 100), (100, 100)), mode='reflect')
    print(f'type(texture) = {type(texture)}, {np.shape(texture)}')
    #==/

    images = sorted(glob.glob(os.path.join(data_folder,
                                           "*_ct.nii.gz"))[:10])  #OMM
    labels = sorted(glob.glob(os.path.join(data_folder,
                                           "*_seg.nii.gz"))[:10])  #OMM
    logging.info(
        f"training: image/label ({len(images)}) folder: {data_folder}")

    amp = True  # auto. mixed precision
    keys = ("image", "label")
    train_frac, val_frac = 0.8, 0.2
    n_train = int(train_frac * len(images)) + 1
    n_val = min(len(images) - n_train, int(val_frac * len(images)))
    logging.info(
        f"training: train {n_train} val {n_val}, folder: {data_folder}")

    train_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[:n_train], labels[:n_train])]
    val_files = [{
        keys[0]: img,
        keys[1]: seg
    } for img, seg in zip(images[-n_val:], labels[-n_val:])]

    # create a training data loader
    batch_size = 1  # XX was 2
    logging.info(f"batch size {batch_size}")
    train_transforms = get_xforms("synthesis", keys, keys2, path_synthesis,
                                  decreasing_sequence, scans_syns, texture)
    train_ds = monai.data.CacheDataset(data=train_files,
                                       transform=train_transforms)
    train_loader = monai.data.DataLoader(
        train_ds,
        batch_size=batch_size,
        shuffle=True,
        num_workers=2,
        pin_memory=torch.cuda.is_available(),
        # collate_fn=pad_list_data_collate,
    )

    # create a validation data loader
    val_transforms = get_xforms("val", keys)
    val_ds = monai.data.CacheDataset(data=val_files, transform=val_transforms)
    val_loader = monai.data.DataLoader(
        val_ds,
        batch_size=
        1,  # image-level batch to the sliding window method, not the window-level batch
        num_workers=2,
        pin_memory=torch.cuda.is_available(),
    )

    # create BasicUNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = get_net().to(device)

    # if continue training
    if continue_training:
        ckpts = sorted(glob.glob(os.path.join(model_folder, "*.pt")))
        ckpt = ckpts[-1]
        logging.info(f"continue training using {ckpt}.")
        net.load_state_dict(torch.load(ckpt, map_location=device))

    # max_epochs, lr, momentum = 500, 1e-4, 0.95
    max_epochs, lr, momentum = 20, 1e-4, 0.95  #OMM
    logging.info(f"epochs {max_epochs}, lr {lr}, momentum {momentum}")
    opt = torch.optim.Adam(net.parameters(), lr=lr)

    # create evaluator (to be used to measure model quality during training
    val_post_transform = monai.transforms.Compose([
        AsDiscreted(keys=("pred", "label"),
                    argmax=(True, False),
                    to_onehot=True,
                    n_classes=2)
    ])
    val_handlers = [
        ProgressBar(),
        MetricsSaver(save_dir="./metrics_val", metrics="*"),
        CheckpointSaver(save_dir=model_folder,
                        save_dict={"net": net},
                        save_key_metric=True,
                        key_metric_n_saved=6),
    ]
    evaluator = monai.engines.SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=get_inferer(),
        post_transform=val_post_transform,
        key_val_metric={
            "val_mean_dice":
            MeanDice(include_background=False,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        val_handlers=val_handlers,
        amp=amp,
    )

    # evaluator as an event handler of the trainer
    train_handlers = [
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        # MetricsSaver(save_dir="./metrics_train", metrics="*"),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
    ]
    trainer = monai.engines.SupervisedTrainer(
        device=device,
        max_epochs=max_epochs,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=DiceCELoss(),
        inferer=get_inferer(),
        key_train_metric=None,
        train_handlers=train_handlers,
        amp=amp,
    )
    trainer.run()
Esempio n. 19
0
def run_training(train_file_list, valid_file_list, config_info):
    """
    Pipeline to train a dynUNet segmentation model in MONAI. It is composed of the following main blocks:
        * Data Preparation: Extract the filenames and prepare the training/validation processing transforms
        * Load Data: Load training and validation data to PyTorch DataLoader
        * Network Preparation: Define the network, loss function, optimiser and learning rate scheduler
        * MONAI Evaluator: Initialise the dynUNet evaluator, i.e. the class providing utilities to perform validation
            during training. Attach handlers to save the best model on the validation set. A 2D sliding window approach
            on the 3D volume is used at evaluation. The mean 3D Dice is used as validation metric.
        * MONAI Trainer: Initialise the dynUNet trainer, i.e. the class providing utilities to perform the training loop.
        * Run training: The MONAI trainer is run, performing training and validation during training.
    Args:
        train_file_list: .txt or .csv file (with no header) storing two-columns filenames for training:
            image filename in the first column and segmentation filename in the second column.
            The two columns should be separated by a comma.
            See monaifbs/config/mock_train_file_list_for_dynUnet_training.txt for an example of the expected format.
        valid_file_list: .txt or .csv file (with no header) storing two-columns filenames for validation:
            image filename in the first column and segmentation filename in the second column.
            The two columns should be separated by a comma.
            See monaifbs/config/mock_valid_file_list_for_dynUnet_training.txt for an example of the expected format.
        config_info: dict, contains configuration parameters for sampling, network and training.
            See monaifbs/config/monai_dynUnet_training_config.yml for an example of the expected fields.
    """

    """
    Read input and configuration parameters
    """
    # print MONAI config information
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)
    print_config()

    # print to log the parameter setups
    print(yaml.dump(config_info))

    # extract network parameters, perform checks/set defaults if not present and print them to log
    if 'seg_labels' in config_info['training'].keys():
        seg_labels = config_info['training']['seg_labels']
    else:
        seg_labels = [1]
    nr_out_channels = len(seg_labels)
    print("Considering the following {} labels in the segmentation: {}".format(nr_out_channels, seg_labels))
    patch_size = config_info["training"]["inplane_size"] + [1]
    print("Considering patch size = {}".format(patch_size))

    spacing = config_info["training"]["spacing"]
    print("Bringing all images to spacing = {}".format(spacing))

    if 'model_to_load' in config_info['training'].keys() and config_info['training']['model_to_load'] is not None:
        model_to_load = config_info['training']['model_to_load']
        if not os.path.exists(model_to_load):
            raise FileNotFoundError("Cannot find model: {}".format(model_to_load))
        else:
            print("Loading model from {}".format(model_to_load))
    else:
        model_to_load = None

    # set up either GPU or CPU usage
    if torch.cuda.is_available():
        print("\n#### GPU INFORMATION ###")
        print("Using device number: {}, name: {}\n".format(torch.cuda.current_device(), torch.cuda.get_device_name()))
        current_device = torch.device("cuda:0")
    else:
        current_device = torch.device("cpu")
        print("Using device: {}".format(current_device))

    # set determinism if required
    if 'manual_seed' in config_info['training'].keys() and config_info['training']['manual_seed'] is not None:
        seed = config_info['training']['manual_seed']
    else:
        seed = None
    if seed is not None:
        print("Using determinism with seed = {}\n".format(seed))
        set_determinism(seed=seed)

    """
    Setup data output directory
    """
    out_model_dir = os.path.join(config_info['output']['out_dir'],
                                 datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + '_' +
                                 config_info['output']['out_postfix'])
    print("Saving to directory {}\n".format(out_model_dir))
    # create cache directory to store results for Persistent Dataset
    if 'cache_dir' in config_info['output'].keys():
        out_cache_dir = config_info['output']['cache_dir']
    else:
        out_cache_dir = os.path.join(out_model_dir, 'persistent_cache')
    persistent_cache: Path = Path(out_cache_dir)
    persistent_cache.mkdir(parents=True, exist_ok=True)

    """
    Data preparation
    """
    # Read the input files for training and validation
    print("*** Loading input data for training...")

    train_files = create_data_list_of_dictionaries(train_file_list)
    print("Number of inputs for training = {}".format(len(train_files)))

    val_files = create_data_list_of_dictionaries(valid_file_list)
    print("Number of inputs for validation = {}".format(len(val_files)))

    # Define MONAI processing transforms for the training data. This includes:
    # - Load Nifti files and convert to format Batch x Channel x Dim1 x Dim2 x Dim3
    # - CropForegroundd: Reduce the background from the MR image
    # - InPlaneSpacingd: Perform in-plane resampling to the desired spacing, but preserve the resolution along the
    #       last direction (lowest resolution) to avoid introducing motion artefact resampling errors
    # - SpatialPadd: Pad the in-plane size to the defined network input patch size [N, M] if needed
    # - NormalizeIntensityd: Apply whitening
    # - RandSpatialCropd: Crop a random patch from the input with size [B, C, N, M, 1]
    # - SqueezeDimd: Convert the 3D patch to a 2D one as input to the network (i.e. bring it to size [B, C, N, M])
    # - Apply data augmentation (RandZoomd, RandRotated, RandGaussianNoised, RandGaussianSmoothd, RandScaleIntensityd,
    #       RandFlipd)
    # - ToTensor: convert to pytorch tensor
    train_transforms = Compose(
        [
            LoadNiftid(keys=["image", "label"]),
            AddChanneld(keys=["image", "label"]),
            CropForegroundd(keys=["image", "label"], source_key="image"),
            InPlaneSpacingd(
                keys=["image", "label"],
                pixdim=spacing,
                mode=("bilinear", "nearest"),
            ),
            SpatialPadd(keys=["image", "label"], spatial_size=patch_size,
                        mode=["constant", "edge"]),
            NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True),
            RandSpatialCropd(keys=["image", "label"], roi_size=patch_size, random_size=False),
            SqueezeDimd(keys=["image", "label"], dim=-1),
            RandZoomd(
                keys=["image", "label"],
                min_zoom=0.9,
                max_zoom=1.2,
                mode=("bilinear", "nearest"),
                align_corners=(True, None),
                prob=0.16,
            ),
            RandRotated(keys=["image", "label"], range_x=90, range_y=90, prob=0.2,
                        keep_size=True, mode=["bilinear", "nearest"],
                        padding_mode=["zeros", "border"]),
            RandGaussianNoised(keys=["image"], std=0.01, prob=0.15),
            RandGaussianSmoothd(
                keys=["image"],
                sigma_x=(0.5, 1.15),
                sigma_y=(0.5, 1.15),
                sigma_z=(0.5, 1.15),
                prob=0.15,
            ),
            RandScaleIntensityd(keys=["image"], factors=0.3, prob=0.15),
            RandFlipd(["image", "label"], spatial_axis=[0, 1], prob=0.5),
            ToTensord(keys=["image", "label"]),
        ]
    )

    # Define MONAI processing transforms for the validation data
    # - Load Nifti files and convert to format Batch x Channel x Dim1 x Dim2 x Dim3
    # - CropForegroundd: Reduce the background from the MR image
    # - InPlaneSpacingd: Perform in-plane resampling to the desired spacing, but preserve the resolution along the
    #       last direction (lowest resolution) to avoid introducing motion artefact resampling errors
    # - SpatialPadd: Pad the in-plane size to the defined network input patch size [N, M] if needed
    # - NormalizeIntensityd: Apply whitening
    # - ToTensor: convert to pytorch tensor
    # NOTE: The validation data is kept 3D as a 2D sliding window approach is used throughout the volume at inference
    val_transforms = Compose(
        [
            LoadNiftid(keys=["image", "label"]),
            AddChanneld(keys=["image", "label"]),
            CropForegroundd(keys=["image", "label"], source_key="image"),
            InPlaneSpacingd(
                keys=["image", "label"],
                pixdim=spacing,
                mode=("bilinear", "nearest"),
            ),
            SpatialPadd(keys=["image", "label"], spatial_size=patch_size, mode=["constant", "edge"]),
            NormalizeIntensityd(keys=["image"], nonzero=False, channel_wise=True),
            ToTensord(keys=["image", "label"]),
        ]
    )

    """
    Load data 
    """
    # create training data loader
    train_ds = PersistentDataset(data=train_files, transform=train_transforms,
                                 cache_dir=persistent_cache)
    train_loader = DataLoader(train_ds,
                              batch_size=config_info['training']['batch_size_train'],
                              shuffle=True,
                              num_workers=config_info['device']['num_workers'])
    check_train_data = misc.first(train_loader)
    print("Training data tensor shapes:")
    print("Image = {}; Label = {}".format(check_train_data["image"].shape, check_train_data["label"].shape))

    # create validation data loader
    if config_info['training']['batch_size_valid'] != 1:
        raise Exception("Batch size different from 1 at validation ar currently not supported")
    val_ds = PersistentDataset(data=val_files, transform=val_transforms, cache_dir=persistent_cache)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            shuffle=False,
                            num_workers=config_info['device']['num_workers'])
    check_valid_data = misc.first(val_loader)
    print("Validation data tensor shapes (Example):")
    print("Image = {}; Label = {}\n".format(check_valid_data["image"].shape, check_valid_data["label"].shape))

    """
    Network preparation
    """
    print("*** Preparing the network ...")
    # automatically extracts the strides and kernels based on nnU-Net empirical rules
    spacings = spacing[:2]
    sizes = patch_size[:2]
    strides, kernels = [], []
    while True:
        spacing_ratio = [sp / min(spacings) for sp in spacings]
        stride = [2 if ratio <= 2 and size >= 8 else 1 for (ratio, size) in zip(spacing_ratio, sizes)]
        kernel = [3 if ratio <= 2 else 1 for ratio in spacing_ratio]
        if all(s == 1 for s in stride):
            break
        sizes = [i / j for i, j in zip(sizes, stride)]
        spacings = [i * j for i, j in zip(spacings, stride)]
        kernels.append(kernel)
        strides.append(stride)
    strides.insert(0, len(spacings) * [1])
    kernels.append(len(spacings) * [3])

    # initialise the network
    net = DynUNet(
        spatial_dims=2,
        in_channels=1,
        out_channels=nr_out_channels,
        kernel_size=kernels,
        strides=strides,
        upsample_kernel_size=strides[1:],
        norm_name="instance",
        deep_supervision=True,
        deep_supr_num=2,
        res_block=False,
    ).to(current_device)
    print(net)

    # define the loss function
    loss_function = choose_loss_function(nr_out_channels, config_info)

    # define the optimiser and the learning rate scheduler
    opt = torch.optim.SGD(net.parameters(), lr=float(config_info['training']['lr']), momentum=0.95)
    scheduler = torch.optim.lr_scheduler.LambdaLR(
        opt, lr_lambda=lambda epoch: (1 - epoch / config_info['training']['nr_train_epochs']) ** 0.9
    )

    """
    MONAI evaluator
    """
    print("*** Preparing the dynUNet evaluator engine...\n")
    # val_post_transforms = Compose(
    #     [
    #         Activationsd(keys="pred", sigmoid=True),
    #     ]
    # )
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir=os.path.join(out_model_dir, "valid"),
                                output_transform=lambda x: None,
                                global_epoch_transform=lambda x: trainer.state.iteration),
        CheckpointSaver(save_dir=out_model_dir, save_dict={"net": net, "opt": opt}, save_key_metric=True,
                        file_prefix='best_valid'),
    ]
    if config_info['output']['val_image_to_tensorboad']:
        val_handlers.append(TensorBoardImageHandler(log_dir=os.path.join(out_model_dir, "valid"),
                                                    batch_transform=lambda x: (x["image"], x["label"]),
                                                    output_transform=lambda x: x["pred"], interval=2))

    # Define customized evaluator
    class DynUNetEvaluator(SupervisedEvaluator):
        def _iteration(self, engine, batchdata):
            inputs, targets = self.prepare_batch(batchdata)
            inputs, targets = inputs.to(engine.state.device), targets.to(engine.state.device)
            flip_inputs_1 = torch.flip(inputs, dims=(2,))
            flip_inputs_2 = torch.flip(inputs, dims=(3,))
            flip_inputs_3 = torch.flip(inputs, dims=(2, 3))

            def _compute_pred():
                pred = self.inferer(inputs, self.network)
                # use random flipping as data augmentation at inference
                flip_pred_1 = torch.flip(self.inferer(flip_inputs_1, self.network), dims=(2,))
                flip_pred_2 = torch.flip(self.inferer(flip_inputs_2, self.network), dims=(3,))
                flip_pred_3 = torch.flip(self.inferer(flip_inputs_3, self.network), dims=(2, 3))
                return (pred + flip_pred_1 + flip_pred_2 + flip_pred_3) / 4

            # execute forward computation
            self.network.eval()
            with torch.no_grad():
                if self.amp:
                    with torch.cuda.amp.autocast():
                        predictions = _compute_pred()
                else:
                    predictions = _compute_pred()
            return {"image": inputs, "label": targets, "pred": predictions}

    evaluator = DynUNetEvaluator(
        device=current_device,
        val_data_loader=val_loader,
        network=net,
        inferer=SlidingWindowInferer2D(roi_size=patch_size, sw_batch_size=4, overlap=0.0),
        post_transform=None,
        key_val_metric={
            "Mean_dice": MeanDice(
                include_background=False,
                to_onehot_y=True,
                mutually_exclusive=True,
                output_transform=lambda x: (x["pred"], x["label"]),
            )
        },
        val_handlers=val_handlers,
        amp=False,
    )

    """
    MONAI trainer
    """
    print("*** Preparing the dynUNet trainer engine...\n")
    # train_post_transforms = Compose(
    #     [
    #         Activationsd(keys="pred", sigmoid=True),
    #     ]
    # )

    validation_every_n_epochs = config_info['training']['validation_every_n_epochs']
    epoch_len = len(train_ds) // train_loader.batch_size
    validation_every_n_iters = validation_every_n_epochs * epoch_len

    # define event handlers for the trainer
    writer_train = SummaryWriter(log_dir=os.path.join(out_model_dir, "train"))
    train_handlers = [
        LrScheduleHandler(lr_scheduler=scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=validation_every_n_iters, epoch_level=False),
        StatsHandler(tag_name="train_loss", output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(summary_writer=writer_train,
                                log_dir=os.path.join(out_model_dir, "train"), tag_name="Loss",
                                output_transform=lambda x: x["loss"],
                                global_epoch_transform=lambda x: trainer.state.iteration),
        CheckpointSaver(save_dir=out_model_dir, save_dict={"net": net, "opt": opt},
                        save_final=True,
                        save_interval=2, epoch_level=True,
                        n_saved=config_info['output']['max_nr_models_saved']),
    ]
    if model_to_load is not None:
        train_handlers.append(CheckpointLoader(load_path=model_to_load, load_dict={"net": net, "opt": opt}))

    # define customized trainer
    class DynUNetTrainer(SupervisedTrainer):
        def _iteration(self, engine, batchdata):
            inputs, targets = self.prepare_batch(batchdata)
            inputs, targets = inputs.to(engine.state.device), targets.to(engine.state.device)

            def _compute_loss(preds, label):
                labels = [label] + [interpolate(label, pred.shape[2:]) for pred in preds[1:]]
                return sum([0.5 ** i * self.loss_function(p, l) for i, (p, l) in enumerate(zip(preds, labels))])

            self.network.train()
            self.optimizer.zero_grad()
            if self.amp and self.scaler is not None:
                with torch.cuda.amp.autocast():
                    predictions = self.inferer(inputs, self.network)
                    loss = _compute_loss(predictions, targets)
                self.scaler.scale(loss).backward()
                self.scaler.step(self.optimizer)
                self.scaler.update()
            else:
                predictions = self.inferer(inputs, self.network)
                loss = _compute_loss(predictions, targets).mean()
                loss.backward()
                self.optimizer.step()
            return {"image": inputs, "label": targets, "pred": predictions, "loss": loss.item()}

    trainer = DynUNetTrainer(
        device=current_device,
        max_epochs=config_info['training']['nr_train_epochs'],
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss_function,
        inferer=SimpleInferer(),
        post_transform=None,
        key_train_metric=None,
        train_handlers=train_handlers,
        amp=False,
    )

    """
    Run training
    """
    print("*** Run training...")
    trainer.run()
    print("Done!")
def main(config):
    now = datetime.now().strftime("%Y%m%d-%H:%M:%S")

    # path
    csv_path = config['path']['csv_path']

    trained_model_path = config['path'][
        'trained_model_path']  # if None, trained from scratch
    training_model_folder = os.path.join(
        config['path']['training_model_folder'], now)  # '/path/to/folder'
    if not os.path.exists(training_model_folder):
        os.makedirs(training_model_folder)
    logdir = os.path.join(training_model_folder, 'logs')
    if not os.path.exists(logdir):
        os.makedirs(logdir)

    # PET CT scan params
    image_shape = tuple(config['preprocessing']['image_shape'])  # (x, y, z)
    in_channels = config['preprocessing']['in_channels']
    voxel_spacing = tuple(
        config['preprocessing']
        ['voxel_spacing'])  # (4.8, 4.8, 4.8)  # in millimeter, (x, y, z)
    data_augment = config['preprocessing'][
        'data_augment']  # True  # for training dataset only
    resize = config['preprocessing']['resize']  # True  # not use yet
    origin = config['preprocessing']['origin']  # how to set the new origin
    normalize = config['preprocessing'][
        'normalize']  # True  # whether or not to normalize the inputs
    number_class = config['preprocessing']['number_class']  # 2

    # CNN params
    architecture = config['model']['architecture']  # 'unet' or 'vnet'

    cnn_params = config['model'][architecture]['cnn_params']
    # transform list to tuple
    for key, value in cnn_params.items():
        if isinstance(value, list):
            cnn_params[key] = tuple(value)

    # Training params
    epochs = config['training']['epochs']
    batch_size = config['training']['batch_size']
    shuffle = config['training']['shuffle']
    opt_params = config['training']["optimizer"]["opt_params"]

    # Get Data
    DM = DataManager(csv_path=csv_path)
    train_images_paths, val_images_paths, test_images_paths = DM.get_train_val_test(
        wrap_with_dict=True)

    # Input preprocessing
    # use data augmentation for training
    train_transforms = Compose([  # read img + meta info
        LoadNifti(keys=["pet_img", "ct_img", "mask_img"]),
        Roi2Mask(keys=['pet_img', 'mask_img'],
                 method='otsu',
                 tval=0.0,
                 idx_channel=0),
        ResampleReshapeAlign(target_shape=image_shape,
                             target_voxel_spacing=voxel_spacing,
                             keys=['pet_img', "ct_img", 'mask_img'],
                             origin='head',
                             origin_key='pet_img'),
        Sitk2Numpy(keys=['pet_img', 'ct_img', 'mask_img']),
        # user can also add other random transforms
        RandAffined(keys=("pet_img", "ct_img", "mask_img"),
                    spatial_size=None,
                    prob=0.4,
                    rotate_range=(0, np.pi / 30, np.pi / 15),
                    shear_range=None,
                    translate_range=(10, 10, 10),
                    scale_range=(0.1, 0.1, 0.1),
                    mode=("bilinear", "bilinear", "nearest"),
                    padding_mode="border"),
        # normalize input
        ScaleIntensityRanged(
            keys=["pet_img"],
            a_min=0.0,
            a_max=25.0,
            b_min=0.0,
            b_max=1.0,
            clip=True,
        ),
        ScaleIntensityRanged(
            keys=["ct_img"],
            a_min=-1000.0,
            a_max=1000.0,
            b_min=0.0,
            b_max=1.0,
            clip=True,
        ),
        # Prepare for neural network
        ConcatModality(keys=['pet_img', 'ct_img']),
        AddChanneld(keys=["mask_img"]),  # Add channel to the first axis
        ToTensord(keys=["image", "mask_img"]),
    ])
    # without data augmentation for validation
    val_transforms = Compose([  # read img + meta info
        LoadNifti(keys=["pet_img", "ct_img", "mask_img"]),
        Roi2Mask(keys=['pet_img', 'mask_img'],
                 method='otsu',
                 tval=0.0,
                 idx_channel=0),
        ResampleReshapeAlign(target_shape=image_shape,
                             target_voxel_spacing=voxel_spacing,
                             keys=['pet_img', "ct_img", 'mask_img'],
                             origin='head',
                             origin_key='pet_img'),
        Sitk2Numpy(keys=['pet_img', 'ct_img', 'mask_img']),
        # normalize input
        ScaleIntensityRanged(
            keys=["pet_img"],
            a_min=0.0,
            a_max=25.0,
            b_min=0.0,
            b_max=1.0,
            clip=True,
        ),
        ScaleIntensityRanged(
            keys=["ct_img"],
            a_min=-1000.0,
            a_max=1000.0,
            b_min=0.0,
            b_max=1.0,
            clip=True,
        ),
        # Prepare for neural network
        ConcatModality(keys=['pet_img', 'ct_img']),
        AddChanneld(keys=["mask_img"]),  # Add channel to the first axis
        ToTensord(keys=["image", "mask_img"]),
    ])

    # create a training data loader
    train_ds = monai.data.CacheDataset(data=train_images_paths,
                                       transform=train_transforms,
                                       cache_rate=0.5)
    # use batch_size=2 to load images to generate 2 x 4 images for network training
    train_loader = monai.data.DataLoader(train_ds,
                                         batch_size=batch_size,
                                         shuffle=shuffle,
                                         num_workers=2)
    # create a validation data loader
    val_ds = monai.data.CacheDataset(data=val_images_paths,
                                     transform=val_transforms,
                                     cache_rate=1.0)
    val_loader = monai.data.DataLoader(val_ds,
                                       batch_size=batch_size,
                                       num_workers=2)

    # Model
    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = UNet(
        dimensions=3,  # 3D
        in_channels=in_channels,
        out_channels=1,
        kernel_size=5,
        channels=(8, 16, 32, 64, 128),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(sigmoid=True, squared_pred=True)
    opt = torch.optim.Adam(net.parameters(), 1e-3)

    # training
    val_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
    ])
    val_handlers = [
        StatsHandler(output_transform=lambda x: None),
        TensorBoardStatsHandler(log_dir="./runs/",
                                output_transform=lambda x: None),
        # TensorBoardImageHandler(
        #     log_dir="./runs/",
        #     batch_transform=lambda x: (x["image"], x["label"]),
        #     output_transform=lambda x: x["pred"],
        # ),
        CheckpointSaver(save_dir="./runs/",
                        save_dict={
                            "net": net,
                            "opt": opt
                        },
                        save_key_metric=True),
    ]

    evaluator = SupervisedEvaluator(
        device=device,
        val_data_loader=val_loader,
        network=net,
        inferer=SimpleInferer(),
        post_transform=val_post_transforms,
        key_val_metric={
            "val_mean_dice":
            MeanDice(include_background=True,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        additional_metrics={
            "val_acc":
            Accuracy(output_transform=lambda x: (x["pred"], x["label"])),
            "val_precision":
            Precision(output_transform=lambda x: (x["pred"], x["label"])),
            "val_recall":
            Recall(output_transform=lambda x: (x["pred"], x["label"]))
        },
        val_handlers=val_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP evaluation
        # amp=True if monai.config.get_torch_version_tuple() >= (1, 6) else False,
    )

    train_post_transforms = Compose([
        Activationsd(keys="pred", sigmoid=True),
        AsDiscreted(keys="pred", threshold_values=True),
    ])
    train_handlers = [
        # LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
        ValidationHandler(validator=evaluator, interval=1, epoch_level=True),
        StatsHandler(tag_name="train_loss",
                     output_transform=lambda x: x["loss"]),
        TensorBoardStatsHandler(log_dir="./runs/",
                                tag_name="train_loss",
                                output_transform=lambda x: x["loss"]),
        CheckpointSaver(save_dir="./runs/",
                        save_dict={
                            "net": net,
                            "opt": opt
                        },
                        save_interval=2,
                        epoch_level=True),
    ]

    trainer = SupervisedTrainer(
        device=device,
        max_epochs=5,
        train_data_loader=train_loader,
        network=net,
        optimizer=opt,
        loss_function=loss,
        prepare_batch=lambda x: (x['image'], x['mask_img']),
        inferer=SimpleInferer(),
        post_transform=train_post_transforms,
        key_train_metric={
            "train_mean_dice":
            MeanDice(include_background=True,
                     output_transform=lambda x: (x["pred"], x["label"]))
        },
        additional_metrics={
            "train_acc":
            Accuracy(output_transform=lambda x: (x["pred"], x["label"])),
            "train_precision":
            Precision(output_transform=lambda x: (x["pred"], x["label"])),
            "train_recall":
            Recall(output_transform=lambda x: (x["pred"], x["label"]))
        },
        train_handlers=train_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP training
        amp=True if monai.config.get_torch_version_tuple() >=
        (1, 6) else False,
    )
    trainer.run()