def test_clf_with_nan(self, input_data, expected_value):
     params = input_data.copy()
     vals = {}
     vals["y_pred"] = params.pop("y_pred")
     vals["y"] = params.pop("y")
     metric = ConfusionMatrixMetric(**params)
     result = metric(**vals)
     np.testing.assert_allclose(result, expected_value, atol=1e-4, rtol=1e-4)
     result, _ = metric.aggregate(reduction="mean_channel")[0]
     expected_value, _ = do_metric_reduction(expected_value, "mean_channel")
     expected_value = compute_confusion_matrix_metric("tpr", expected_value)
     np.testing.assert_allclose(result, expected_value, atol=1e-4, rtol=1e-4)
Esempio n. 2
0
    def compute(self):
        """
        Raises:
            NotComputableError: When ``compute`` is called before an ``update`` occurs.

        """
        if self.compute_sample is True:
            if self._num_examples == 0:
                raise NotComputableError(
                    "ConfusionMatrix metric must have at least one example before it can be computed."
                )
            return self._sum / self._num_examples
        confusion_matrix = torch.tensor(
            [self._total_tp, self._total_fp, self._total_tn, self._total_fn])
        return compute_confusion_matrix_metric(self.metric_name,
                                               confusion_matrix)
Esempio n. 3
0
 def _reduce(self, scores) -> Any:
     confusion_matrix, _ = do_metric_reduction(scores, MetricReduction.MEAN)
     return compute_confusion_matrix_metric(self.metric_name, confusion_matrix)