def test_script(self): net = VNet(spatial_dims=3, in_channels=1, out_channels=3, dropout_dim=3) test_data = torch.randn(1, 1, 32, 32, 32) test_script_save(net, test_data)
def test_script(self): net = VNet(spatial_dims=3, in_channels=1, out_channels=3, dropout_dim=3) test_data = torch.randn(1, 1, 32, 32, 32) out_orig, out_reloaded = test_script_save(net, test_data) assert torch.allclose(out_orig, out_reloaded)
def test_vnet_shape(self, input_param, input_data, expected_shape): net = VNet(**input_param) net.eval() with torch.no_grad(): result = net.forward(input_data) self.assertEqual(result.shape, expected_shape)
def test_vnet_shape(self, input_param, input_shape, expected_shape): net = VNet(**input_param).to(device) with eval_mode(net): result = net.forward(torch.randn(input_shape).to(device)) self.assertEqual(result.shape, expected_shape)