def __init__( self, keys: KeysCollection, reader: Optional[Union[ImageReader, str]] = None, dtype: Optional[np.dtype] = np.float32, meta_key_postfix: str = "meta_dict", overwriting: bool = False, *args, **kwargs, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` reader: register reader to load image file and meta data, if None, still can register readers at runtime or use the default readers. If a string of reader name provided, will construct a reader object with the `*args` and `**kwargs` parameters, supported reader name: "NibabelReader", "PILReader", "ITKReader", "NumpyReader" dtype: if not None convert the loaded image data to this data type. meta_key_postfix: use `key_{postfix}` to store the metadata of the nifti image, default is `meta_dict`. The meta data is a dictionary object. For example, load nifti file for `image`, store the metadata into `image_meta_dict`. overwriting: whether allow to overwrite existing meta data of same key. default is False, which will raise exception if encountering existing key. args: additional parameters for reader if providing a reader name. kwargs: additional parameters for reader if providing a reader name. """ super().__init__(keys) self._loader = LoadImage(reader, False, dtype, *args, **kwargs) if not isinstance(meta_key_postfix, str): raise TypeError(f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}.") self.meta_key_postfix = meta_key_postfix self.overwriting = overwriting
def __init__( self, keys: KeysCollection, reader: Optional[ImageReader] = None, dtype: Optional[np.dtype] = np.float32, meta_key_postfix: str = "meta_dict", overwriting: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` reader: register reader to load image file and meta data, if None, still can register readers at runtime or use the default ITK reader. dtype: if not None convert the loaded image data to this data type. meta_key_postfix: use `key_{postfix}` to store the metadata of the nifti image, default is `meta_dict`. The meta data is a dictionary object. For example, load nifti file for `image`, store the metadata into `image_meta_dict`. overwriting: whether allow to overwrite existing meta data of same key. default is False, which will raise exception if encountering existing key. """ super().__init__(keys) self._loader = LoadImage(reader, False, dtype) if not isinstance(meta_key_postfix, str): raise TypeError( f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}." ) self.meta_key_postfix = meta_key_postfix self.overwriting = overwriting
def __init__( self, keys: KeysCollection, reader: Optional[Union[ImageReader, str]] = None, dtype: DtypeLike = np.float32, meta_keys: Optional[KeysCollection] = None, meta_key_postfix: str = DEFAULT_POST_FIX, overwriting: bool = False, image_only: bool = False, ensure_channel_first: bool = False, allow_missing_keys: bool = False, *args, **kwargs, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` reader: reader to load image file and meta data - if `reader` is None, a default set of `SUPPORTED_READERS` will be used. - if `reader` is a string, it's treated as a class name or dotted path (such as ``"monai.data.ITKReader"``), the supported built-in reader classes are ``"ITKReader"``, ``"NibabelReader"``, ``"NumpyReader"``. a reader instance will be constructed with the `*args` and `**kwargs` parameters. - if `reader` is a reader class/instance, it will be registered to this loader accordingly. dtype: if not None, convert the loaded image data to this data type. meta_keys: explicitly indicate the key to store the corresponding meta data dictionary. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the `keys`. if None, will try to construct meta_keys by `key_{meta_key_postfix}`. meta_key_postfix: if meta_keys is None, use `key_{postfix}` to store the metadata of the nifti image, default is `meta_dict`. The meta data is a dictionary object. For example, load nifti file for `image`, store the metadata into `image_meta_dict`. overwriting: whether allow overwriting existing meta data of same key. default is False, which will raise exception if encountering existing key. image_only: if True return dictionary containing just only the image volumes, otherwise return dictionary containing image data array and header dict per input key. ensure_channel_first: if `True` and loaded both image array and meta data, automatically convert the image array shape to `channel first`. default to `False`. allow_missing_keys: don't raise exception if key is missing. args: additional parameters for reader if providing a reader name. kwargs: additional parameters for reader if providing a reader name. """ super().__init__(keys, allow_missing_keys) self._loader = LoadImage(reader, image_only, dtype, ensure_channel_first, *args, **kwargs) if not isinstance(meta_key_postfix, str): raise TypeError( f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}." ) self.meta_keys = ensure_tuple_rep(None, len( self.keys)) if meta_keys is None else ensure_tuple(meta_keys) if len(self.keys) != len(self.meta_keys): raise ValueError("meta_keys should have the same length as keys.") self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) self.overwriting = overwriting
def __init__( self, keys: KeysCollection, reader: Optional[Union[ImageReader, str]] = None, dtype: DtypeLike = np.float32, meta_keys: Optional[KeysCollection] = None, meta_key_postfix: str = "meta_dict", overwriting: bool = False, image_only: bool = False, allow_missing_keys: bool = False, *args, **kwargs, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` reader: register reader to load image file and meta data, if None, still can register readers at runtime or use the default readers. If a string of reader name provided, will construct a reader object with the `*args` and `**kwargs` parameters, supported reader name: "NibabelReader", "PILReader", "ITKReader", "NumpyReader". dtype: if not None convert the loaded image data to this data type. meta_keys: explicitly indicate the key to store the corresponding meta data dictionary. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the `keys`. if None, will try to construct meta_keys by `key_{meta_key_postfix}`. meta_key_postfix: if meta_keys is None, use `key_{postfix}` to store the metadata of the nifti image, default is `meta_dict`. The meta data is a dictionary object. For example, load nifti file for `image`, store the metadata into `image_meta_dict`. overwriting: whether allow to overwrite existing meta data of same key. default is False, which will raise exception if encountering existing key. image_only: if True return dictionary containing just only the image volumes, otherwise return dictionary containing image data array and header dict per input key. allow_missing_keys: don't raise exception if key is missing. args: additional parameters for reader if providing a reader name. kwargs: additional parameters for reader if providing a reader name. """ super().__init__(keys, allow_missing_keys) self._loader = LoadImage(reader, image_only, dtype, *args, **kwargs) if not isinstance(meta_key_postfix, str): raise TypeError( f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}." ) self.meta_keys = ensure_tuple_rep(None, len( self.keys)) if meta_keys is None else ensure_tuple(meta_keys) if len(self.keys) != len(self.meta_keys): raise ValueError("meta_keys should have the same length as keys.") self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) self.overwriting = overwriting
class LoadImaged(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.LoadImage`, must load image and metadata together. If loading a list of files in one key, stack them together and add a new dimension as the first dimension, and use the meta data of the first image to represent the stacked result. Note that the affine transform of all the stacked images should be same. The output metadata field will be created as ``key_{meta_key_postfix}``. It can automatically choose readers based on the supported suffixes and in below order: - User specified reader at runtime when call this loader. - Registered readers from the latest to the first in list. - Default readers: (nii, nii.gz -> NibabelReader), (png, jpg, bmp -> PILReader), (npz, npy -> NumpyReader), (others -> ITKReader). """ def __init__( self, keys: KeysCollection, reader: Optional[Union[ImageReader, str]] = None, dtype: Optional[np.dtype] = np.float32, meta_key_postfix: str = "meta_dict", overwriting: bool = False, *args, **kwargs, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` reader: register reader to load image file and meta data, if None, still can register readers at runtime or use the default readers. If a string of reader name provided, will construct a reader object with the `*args` and `**kwargs` parameters, supported reader name: "NibabelReader", "PILReader", "ITKReader", "NumpyReader" dtype: if not None convert the loaded image data to this data type. meta_key_postfix: use `key_{postfix}` to store the metadata of the nifti image, default is `meta_dict`. The meta data is a dictionary object. For example, load nifti file for `image`, store the metadata into `image_meta_dict`. overwriting: whether allow to overwrite existing meta data of same key. default is False, which will raise exception if encountering existing key. args: additional parameters for reader if providing a reader name. kwargs: additional parameters for reader if providing a reader name. """ super().__init__(keys) self._loader = LoadImage(reader, False, dtype, *args, **kwargs) if not isinstance(meta_key_postfix, str): raise TypeError(f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}.") self.meta_key_postfix = meta_key_postfix self.overwriting = overwriting def register(self, reader: ImageReader): self._loader.register(reader) def __call__(self, data, reader: Optional[ImageReader] = None): """ Raises: KeyError: When not ``self.overwriting`` and key already exists in ``data``. """ d = dict(data) for key in self.keys: data = self._loader(d[key], reader) if not isinstance(data, (tuple, list)): raise ValueError("loader must return a tuple or list.") d[key] = data[0] if not isinstance(data[1], dict): raise ValueError("metadata must be a dict.") key_to_add = f"{key}_{self.meta_key_postfix}" if key_to_add in d and not self.overwriting: raise KeyError(f"Meta data with key {key_to_add} already exists and overwriting=False.") d[key_to_add] = data[1] return d
class LoadImaged(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.LoadImage`, It can load both image data and metadata. When loading a list of files in one key, the arrays will be stacked and a new dimension will be added as the first dimension In this case, the meta data of the first image will be used to represent the stacked result. The affine transform of all the stacked images should be same. The output metadata field will be created as ``meta_keys`` or ``key_{meta_key_postfix}``. If reader is not specified, this class automatically chooses readers based on the supported suffixes and in the following order: - User-specified reader at runtime when calling this loader. - User-specified reader in the constructor of `LoadImage`. - Readers from the last to the first in the registered list. - Current default readers: (nii, nii.gz -> NibabelReader), (png, jpg, bmp -> PILReader), (npz, npy -> NumpyReader), (dcm, DICOM series and others -> ITKReader). Note: - If `reader` is specified, the loader will attempt to use the specified readers and the default supported readers. This might introduce overheads when handling the exceptions of trying the incompatible loaders. In this case, it is therefore recommended setting the most appropriate reader as the last item of the `reader` parameter. See also: - tutorial: https://github.com/Project-MONAI/tutorials/blob/master/modules/load_medical_images.ipynb """ def __init__( self, keys: KeysCollection, reader: Optional[Union[ImageReader, str]] = None, dtype: DtypeLike = np.float32, meta_keys: Optional[KeysCollection] = None, meta_key_postfix: str = DEFAULT_POST_FIX, overwriting: bool = False, image_only: bool = False, ensure_channel_first: bool = False, allow_missing_keys: bool = False, *args, **kwargs, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` reader: reader to load image file and meta data - if `reader` is None, a default set of `SUPPORTED_READERS` will be used. - if `reader` is a string, it's treated as a class name or dotted path (such as ``"monai.data.ITKReader"``), the supported built-in reader classes are ``"ITKReader"``, ``"NibabelReader"``, ``"NumpyReader"``. a reader instance will be constructed with the `*args` and `**kwargs` parameters. - if `reader` is a reader class/instance, it will be registered to this loader accordingly. dtype: if not None, convert the loaded image data to this data type. meta_keys: explicitly indicate the key to store the corresponding meta data dictionary. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the `keys`. if None, will try to construct meta_keys by `key_{meta_key_postfix}`. meta_key_postfix: if meta_keys is None, use `key_{postfix}` to store the metadata of the nifti image, default is `meta_dict`. The meta data is a dictionary object. For example, load nifti file for `image`, store the metadata into `image_meta_dict`. overwriting: whether allow overwriting existing meta data of same key. default is False, which will raise exception if encountering existing key. image_only: if True return dictionary containing just only the image volumes, otherwise return dictionary containing image data array and header dict per input key. ensure_channel_first: if `True` and loaded both image array and meta data, automatically convert the image array shape to `channel first`. default to `False`. allow_missing_keys: don't raise exception if key is missing. args: additional parameters for reader if providing a reader name. kwargs: additional parameters for reader if providing a reader name. """ super().__init__(keys, allow_missing_keys) self._loader = LoadImage(reader, image_only, dtype, ensure_channel_first, *args, **kwargs) if not isinstance(meta_key_postfix, str): raise TypeError( f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}." ) self.meta_keys = ensure_tuple_rep(None, len( self.keys)) if meta_keys is None else ensure_tuple(meta_keys) if len(self.keys) != len(self.meta_keys): raise ValueError("meta_keys should have the same length as keys.") self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) self.overwriting = overwriting def register(self, reader: ImageReader): self._loader.register(reader) def __call__(self, data, reader: Optional[ImageReader] = None): """ Raises: KeyError: When not ``self.overwriting`` and key already exists in ``data``. """ d = dict(data) for key, meta_key, meta_key_postfix in self.key_iterator( d, self.meta_keys, self.meta_key_postfix): data = self._loader(d[key], reader) if self._loader.image_only: if not isinstance(data, np.ndarray): raise ValueError( "loader must return a numpy array (because image_only=True was used)." ) d[key] = data else: if not isinstance(data, (tuple, list)): raise ValueError( "loader must return a tuple or list (because image_only=False was used)." ) d[key] = data[0] if not isinstance(data[1], dict): raise ValueError("metadata must be a dict.") meta_key = meta_key or f"{key}_{meta_key_postfix}" if meta_key in d and not self.overwriting: raise KeyError( f"Meta data with key {meta_key} already exists and overwriting=False." ) d[meta_key] = data[1] return d
class LoadImaged(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.LoadImage`, must load image and metadata together. If loading a list of files in one key, stack them together and add a new dimension as the first dimension, and use the meta data of the first image to represent the stacked result. Note that the affine transform of all the stacked images should be same. The output metadata field will be created as ``meta_keys`` or ``key_{meta_key_postfix}``. It can automatically choose readers based on the supported suffixes and in below order: - User specified reader at runtime when call this loader. - Registered readers from the latest to the first in list. - Default readers: (nii, nii.gz -> NibabelReader), (png, jpg, bmp -> PILReader), (npz, npy -> NumpyReader), (others -> ITKReader). """ def __init__( self, keys: KeysCollection, reader: Optional[Union[ImageReader, str]] = None, dtype: DtypeLike = np.float32, meta_keys: Optional[KeysCollection] = None, meta_key_postfix: str = "meta_dict", overwriting: bool = False, image_only: bool = False, allow_missing_keys: bool = False, *args, **kwargs, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` reader: register reader to load image file and meta data, if None, still can register readers at runtime or use the default readers. If a string of reader name provided, will construct a reader object with the `*args` and `**kwargs` parameters, supported reader name: "NibabelReader", "PILReader", "ITKReader", "NumpyReader". dtype: if not None convert the loaded image data to this data type. meta_keys: explicitly indicate the key to store the corresponding meta data dictionary. the meta data is a dictionary object which contains: filename, original_shape, etc. it can be a sequence of string, map to the `keys`. if None, will try to construct meta_keys by `key_{meta_key_postfix}`. meta_key_postfix: if meta_keys is None, use `key_{postfix}` to store the metadata of the nifti image, default is `meta_dict`. The meta data is a dictionary object. For example, load nifti file for `image`, store the metadata into `image_meta_dict`. overwriting: whether allow to overwrite existing meta data of same key. default is False, which will raise exception if encountering existing key. image_only: if True return dictionary containing just only the image volumes, otherwise return dictionary containing image data array and header dict per input key. allow_missing_keys: don't raise exception if key is missing. args: additional parameters for reader if providing a reader name. kwargs: additional parameters for reader if providing a reader name. """ super().__init__(keys, allow_missing_keys) self._loader = LoadImage(reader, image_only, dtype, *args, **kwargs) if not isinstance(meta_key_postfix, str): raise TypeError( f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}." ) self.meta_keys = ensure_tuple_rep(None, len( self.keys)) if meta_keys is None else ensure_tuple(meta_keys) if len(self.keys) != len(self.meta_keys): raise ValueError("meta_keys should have the same length as keys.") self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) self.overwriting = overwriting def register(self, reader: ImageReader): self._loader.register(reader) def __call__(self, data, reader: Optional[ImageReader] = None): """ Raises: KeyError: When not ``self.overwriting`` and key already exists in ``data``. """ d = dict(data) for key, meta_key, meta_key_postfix in self.key_iterator( d, self.meta_keys, self.meta_key_postfix): data = self._loader(d[key], reader) if self._loader.image_only: if not isinstance(data, np.ndarray): raise ValueError( "loader must return a numpy array (because image_only=True was used)." ) d[key] = data else: if not isinstance(data, (tuple, list)): raise ValueError( "loader must return a tuple or list (because image_only=False was used)." ) d[key] = data[0] if not isinstance(data[1], dict): raise ValueError("metadata must be a dict.") meta_key = meta_key or f"{key}_{meta_key_postfix}" if meta_key in d and not self.overwriting: raise KeyError( f"Meta data with key {meta_key} already exists and overwriting=False." ) d[meta_key] = data[1] return d
class LoadImaged(MapTransform): """ Dictionary-based wrapper of :py:class:`monai.transforms.LoadImage`, must load image and metadata together. If loading a list of files in one key, stack them together and add a new dimension as the first dimension, and use the meta data of the first image to represent the stacked result. Note that the affine transform of all the stacked images should be same. The output metadata field will be created as ``key_{meta_key_postfix}``. """ def __init__( self, keys: KeysCollection, reader: Optional[ImageReader] = None, dtype: Optional[np.dtype] = np.float32, meta_key_postfix: str = "meta_dict", overwriting: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` reader: register reader to load image file and meta data, if None, still can register readers at runtime or use the default ITK reader. dtype: if not None convert the loaded image data to this data type. meta_key_postfix: use `key_{postfix}` to store the metadata of the nifti image, default is `meta_dict`. The meta data is a dictionary object. For example, load nifti file for `image`, store the metadata into `image_meta_dict`. overwriting: whether allow to overwrite existing meta data of same key. default is False, which will raise exception if encountering existing key. """ super().__init__(keys) self._loader = LoadImage(reader, False, dtype) if not isinstance(meta_key_postfix, str): raise TypeError( f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}." ) self.meta_key_postfix = meta_key_postfix self.overwriting = overwriting def register(self, reader: ImageReader): self._loader.register(reader) def __call__(self, data, reader: Optional[ImageReader] = None): """ Raises: KeyError: When not ``self.overwriting`` and key already exists in ``data``. """ d = dict(data) for key in self.keys: data = self._loader(d[key], reader) assert isinstance( data, (tuple, list)), "loader must return a tuple or list." d[key] = data[0] assert isinstance(data[1], dict), "metadata must be a dict." key_to_add = f"{key}_{self.meta_key_postfix}" if key_to_add in d and not self.overwriting: raise KeyError( f"Meta data with key {key_to_add} already exists and overwriting=False." ) d[key_to_add] = data[1] return d