def __init__( self, keys: KeysCollection, sigmoid: Union[Sequence[bool], bool] = False, softmax: Union[Sequence[bool], bool] = False, other: Optional[Union[Sequence[Callable], Callable]] = None, ) -> None: """ Args: keys: keys of the corresponding items to model output and label. See also: :py:class:`monai.transforms.compose.MapTransform` sigmoid: whether to execute sigmoid function on model output before transform. it also can be a sequence of bool, each element corresponds to a key in ``keys``. softmax: whether to execute softmax function on model output before transform. it also can be a sequence of bool, each element corresponds to a key in ``keys``. other: callable function to execute other activation layers, for example: `other = lambda x: torch.tanh(x)`. it also can be a sequence of Callable, each element corresponds to a key in ``keys``. """ super().__init__(keys) self.sigmoid = ensure_tuple_rep(sigmoid, len(self.keys)) self.softmax = ensure_tuple_rep(softmax, len(self.keys)) self.other = ensure_tuple_rep(other, len(self.keys)) self.converter = Activations()
def __init__(self, keys: Hashable, output_postfix: str = "act", sigmoid=False, softmax=False, other=None): """ Args: keys (hashable items): keys of the corresponding items to model output and label. See also: :py:class:`monai.transforms.compose.MapTransform` output_postfix (str): the postfix string to construct keys to store converted data. for example: if the keys of input data is `pred` and `label`, output_postfix is `act`, the output data keys will be: `pred_act`, `label_act`. if set to None, will replace the original data with the same key. sigmoid (bool, tuple or list of bool): whether to execute sigmoid function on model output before transform. softmax (bool, tuple or list of bool): whether to execute softmax function on model output before transform. other (Callable, tuple or list of Callables): callable function to execute other activation layers, for example: `other = lambda x: torch.tanh(x)` """ super().__init__(keys) if output_postfix is not None and not isinstance(output_postfix, str): raise ValueError("output_postfix must be a string.") self.output_postfix = output_postfix self.sigmoid = ensure_tuple_rep(sigmoid, len(self.keys)) self.softmax = ensure_tuple_rep(softmax, len(self.keys)) self.other = ensure_tuple_rep(other, len(self.keys)) self.converter = Activations()
def __init__(self, keys: KeysCollection, sigmoid=False, softmax=False, other=None): """ Args: keys: keys of the corresponding items to model output and label. See also: :py:class:`monai.transforms.compose.MapTransform` sigmoid (bool, tuple or list of bool): whether to execute sigmoid function on model output before transform. softmax (bool, tuple or list of bool): whether to execute softmax function on model output before transform. other (Callable, tuple or list of Callables): callable function to execute other activation layers, for example: `other = lambda x: torch.tanh(x)` """ super().__init__(keys) self.sigmoid = ensure_tuple_rep(sigmoid, len(self.keys)) self.softmax = ensure_tuple_rep(softmax, len(self.keys)) self.other = ensure_tuple_rep(other, len(self.keys)) self.converter = Activations()