def test_value(self, input_param, input_data): for p in TEST_NDARRAYS: cropper = RandScaleCropd(**input_param) input_data["img"] = p(input_data["img"]) result = cropper(input_data) roi = [(2 - i // 2, 2 + i - i // 2) for i in cropper._size] assert_allclose(result["img"], input_data["img"][:, roi[0][0]:roi[0][1], roi[1][0]:roi[1][1]], type_test=False)
def test_random_shape(self, input_param, input_data, expected_shape): cropper = RandScaleCropd(**input_param) cropper.set_random_state(seed=123) result = cropper(input_data) self.assertTupleEqual(result["img"].shape, expected_shape)
def test_shape(self, input_param, input_data, expected_shape): result = RandScaleCropd(**input_param)(input_data) self.assertTupleEqual(result["img"].shape, expected_shape)
def test_value(self, input_param, input_data): cropper = RandScaleCropd(**input_param) result = cropper(input_data) roi = [(2 - i // 2, 2 + i - i // 2) for i in cropper._size] np.testing.assert_allclose(result["img"], input_data["img"][:, roi[0][0] : roi[0][1], roi[1][0] : roi[1][1]])