Esempio n. 1
0
 def __init__(self, log_database, log_collection, execution_id):
     self.log_database = log_database
     self.log_collection = log_collection
     self.execution_id = execution_id
     self.mongoDBObject = MongodbOperation()
     self.log_db_writer = App_LoggerDB(execution_id=execution_id)
     self.az_blob_mgt = AzureBlobManagement()
Esempio n. 2
0
 def __init__(self, execution_id):
     #self.file_object = file_object
     #self.logger_object = logger_object
     self.log_database="strength_training_log"
     self.log_collection="stg-training_main_log"
     self.execution_id=execution_id
     self.log_db_writer=App_LoggerDB(execution_id=execution_id)
     self.mongoDBObject = MongodbOperation()
     self.az_blob_mgt=AzureBlobManagement()
Esempio n. 3
0
 def __init__(self, path, execution_id):
     self.Batch_Directory = path
     self.execution_id = execution_id
     self.collection_name = "strength_schema_prediction"  #code added by Avnish yadav
     self.database_name = "Wafer-sys"  #code added by Avnish yadav
     self.logger_db_writer = App_LoggerDB(
         execution_id=execution_id)  #code added by Avnish yadav
     self.mongdb = MongodbOperation()
     self.az_blob_mgt = AzureBlobManagement()
     self.good_directory_path = "good-raw-file-prediction-validated"
     self.bad_directory_path = "bad-raw-file-prediction-validated"
Esempio n. 4
0
    def __init__(self, log_database, log_collection, execution_id):
        #self.file_object = file_object
        #self.logger_object = logger_object

        self.execution_id = execution_id
        self.log_db_writer = App_LoggerDB(execution_id=execution_id)
        self.log_database = log_database
        self.log_collection = log_collection
        self.az_blob_mgt = AzureBlobManagement()
        self.mongoDBObject = MongodbOperation()

        self.clf = RandomForestClassifier()
        self.xgb = XGBClassifier(objective='binary:logistic')
Esempio n. 5
0
    def __init__(self, log_database, log_collection, execution_id):
        #self.file_object = file_object
        #self.logger_object = logger_object

        self.execution_id = execution_id
        self.log_db_writer = App_LoggerDB(execution_id=execution_id)
        self.log_database = log_database
        self.log_collection = log_collection
        self.az_blob_mgt = AzureBlobManagement()
        self.mongoDBObject = MongodbOperation()

        self.linearReg = LinearRegression()
        self.RandomForestReg = RandomForestRegressor()
        self.DecisionTreeReg = DecisionTreeRegressor()
        self.XGBoostReg = XGBRegressor()
        self.AdaboostReg = AdaBoostRegressor()
        self.svm = SVC()
Esempio n. 6
0
def index():
    if request.method == 'POST':
        searchString = request.form['content'].replace(
            " ", "")  # obtaining the search string entered in the form
        print(searchString)
        try:
            print("entered try Block")
            mongodb = MongodbOperation()
            #dbConn = pymongo.MongoClient("mongodb://localhost:27017/")  # opening a connection to Mongo
            #db = dbConn['crawlerDB'] # connecting to the database called crawlerDB
            a = mongodb.getDataBaseClientObject()
            #reviews=mongodb.checkExistingCollection(searchString,database='crawlerDB')
            #print(reviews)
            #reviews = db[searchString].find({}) # searching the collection with the name same as the keyword
            reviews = -1
            print("entered if block")
            if reviews > 0:  # if there is a collection with searched keyword and it has records in it
                return render_template(
                    'results.html',
                    reviews=reviews)  # show the results to user
            else:
                print('entered else block')
                flipkart_url = "https://www.flipkart.com/search?q=" + searchString  # preparing the URL to search the product on flipkart
                uClient = uReq(
                    flipkart_url)  # requesting the webpage from the internet
                flipkartPage = uClient.read()  # reading the webpage
                uClient.close()  # closing the connection to the web server
                flipkart_html = bs(
                    flipkartPage, "html.parser")  # parsing the webpage as HTML
                bigboxes = flipkart_html.findAll(
                    "div", {"class": "_1AtVbE col-12-12"}
                )  # seacrhing for appropriate tag to redirect to the product link
                del bigboxes[
                    0:
                    3]  # the first 3 members of the list do not contain relevant information, hence deleting them.
                box = bigboxes[0]  #  taking the first iteration (for demo)
                productLink = "https://www.flipkart.com" + box.div.div.div.a[
                    'href']  # extracting the actual product link
                prodRes = requests.get(
                    productLink)  # getting the product page from server
                prod_html = bs(
                    prodRes.text,
                    "html.parser")  # parsing the product page as HTML
                commentboxes = prod_html.find_all('div', {
                    'class': "_16PBlm"
                })  # finding the HTML section containing the customer comments

                #table = db[searchString] # creating a collection with the same name as search string. Tables and Collections are analogous.
                a = mongodb.getDataBaseClientObject()
                database1 = mongodb.createDatabase(a, "crawlerDB")
                table1 = mongodb.createCollectionInDatabase(
                    database1, searchString)
                #filename = searchString+".csv" #  filename to save the details
                #fw = open(filename, "w") # creating a local file to save the details
                #headers = "Product, Customer Name, Rating, Heading, Comment \n" # providing the heading of the columns
                #fw.write(headers) # writing first the headers to file
                reviews = []  # initializing an empty list for reviews
                #  iterating over the comment section to get the details of customer and their comments
                for commentbox in commentboxes:
                    try:
                        name = commentbox.div.div.find_all(
                            'p', {'class': '_2sc7ZR _2V5EHH'})[0].text

                    except:
                        name = 'No Name'

                    try:
                        rating = commentbox.div.div.div.div.text

                    except:
                        rating = 'No Rating'

                    try:
                        commentHead = commentbox.div.div.div.p.text
                    except:
                        commentHead = 'No Comment Heading'
                    try:
                        comtag = commentbox.div.div.find_all(
                            'div', {'class': ''})
                        custComment = comtag[0].div.text
                    except:
                        custComment = 'No Customer Comment'
                    #fw.write(searchString+","+name.replace(",", ":")+","+rating + "," + commentHead.replace(",", ":") + "," + custComment.replace(",", ":") + "\n")
                    mydict = {
                        "Product": searchString,
                        "Name": name,
                        "Rating": rating,
                        "CommentHead": commentHead,
                        "Comment": custComment
                    }  # saving that detail to a dictionary

                    #x = table.insert_one(mydict) #insertig the dictionary containing the rview comments to the collection
                    x = mongodb.createOneRecord(searchString, mydict)
                    reviews.append(
                        mydict)  #  appending the comments to the review list
                return render_template(
                    'results.html',
                    reviews=reviews)  # showing the review to the user
        except Exception as e:
            print(e)
            return 'something is wrong'
            #return render_template('results.html')
    else:
        return render_template('index.html')
Esempio n. 7
0
#client = pymongo.MongoClient("mongodb+srv://{0}:{1}@cluster0.tpqna.mongodb.net/Projectdb?retryWrites=true&w=majority")
client = pymongo.MongoClient("mongodb+srv://test:[email protected]/Projectdb?retryWrites=true&w=majority")
db = client.get_database('Wafer-sys')
mydb = client['Wafer-sys']
mycol = mydb["schema-training"]

#records = db.new1_db

#a=records.count_documents({})
#print(a)

""" for testing the class function"""


a=MongodbOperation()
#c=a.getDataBaseClientObject()
#d=a.createDatabase(c,'newentry')

#e=a.createCollectionInDatabase(d,'values')
record={"Sensor - 3":" float "}
record1={"name":"sherwyn"}
record3={"name":"leena","rollno": 3223,"dept": "plsql"}
record4={"name":"sangetha","rollno": 13223,"dept": "12plsql"}

#data1 = [{"code":"2","sum":"10"},{"local":"20"}]
#df = pd.DataFrame(data1)
#g=a.checkExistingCollection("values", d)
#print(g)

#d=a.checkDatabase(c,'Projectdb')
 def __init__(self, execution_id):
     self.mongodb=MongodbOperation()
     self.az_blob_mgt=AzureBlobManagement()
     self.logger_db_writer=App_LoggerDB(execution_id=execution_id)
     self.good_file_path="good-raw-file-prediction-validated"
     self.bad_file_path="bad-raw-file-prediction-validated"
 def __init__(self, execution_id):
     self.mongoDBObject = MongodbOperation()
     self.azureBlobObject = AzureBlobManagement()
     self.execution_id = execution_id
     pass