def GetData(coll_prefix): fdata = [] for date, value in coll_prefix.items(): if ("traffic" in value): traflist = value["traffic"] else: traflist = [""] if ("ID" in value): IDlist = value["ID"] else: IDlist = [""] for t in traflist: for i in IDlist: W_coll = date + t + i if (W_coll in coll_prefix["Exception"]): continue W_coll = W_coll + '-ProcessData' mW = mongodb_api(user='******', pwd='ubuntu', database='wifi_diagnosis', collection=W_coll) found = mW.find(key_value={}, ftype='many') c_print(W_coll + ' : ' + str(len(found))) fdata = fdata + found return fdata
SkipFirstN = 0 iptable = { "AP": "10.144.24.24", "STA": "10.144.24.23", "10.144.24.24": "AP", "10.144.24.23": "STA" } R_coll = date + '-TestData' W_coll = date + '-ProcessData' ML_coll = date + '-MLData' ML_coll_pair = date + 'MLData-Pair' mR = mongodb_api(user='******', pwd='ubuntu', database='wifi_diagnosis', collection=R_coll) mW = mongodb_api(user='******', pwd='ubuntu', database='wifi_diagnosis', collection=W_coll) mdb_ML = mongodb_api(user='******', pwd='ubuntu', database='wifi_diagnosis', collection=ML_coll) mdb_ML_pair = mongodb_api(user='******', pwd='ubuntu', database='wifi_diagnosis', collection=ML_coll_pair) # sorted_data = Testdata_sort(mR)
scanlist.append(tmp) new_data_payload["Scan"] = scanlist return new_data_payload #new_data_payload["Time"] = Time #return new_data_payload if __name__ == '__main__': date='1070207small-t1' R_coll = date + '-RawData' W_coll = date + '-TestData' m = mongodb_api(user='******', pwd='ubuntu', database='wifi_diagnosis', collection=R_coll) # find_reg = {"Topic":"CwmData/DumpAth9kAni"} find_reg = {} found_data = m.find(key_value = find_reg, ftype='many') print(len(found_data)) m = mongodb_api(user='******', pwd='ubuntu', database='wifi_diagnosis', collection=W_coll) m.remove(key_value = {}, justone=False) casetype = "Start" for data in found_data: out, casetype = data_process(data,casetype)
import mongodb_api as db import pandas as pd import sys import numpy as np from sklearn.svm import SVR from matplotlib import pyplot as plt m = db.mongodb_api(user='******', pwd='ubuntu', collection="TestData1213") found_data = m.find(ftype='many') _found_data = {} idx = 0 survey_dict = { "survey_data": [], "survey_mean": [], "survey_std": [], "survey_FER": [] } spectralscan_data_dict = { "Spectralscan_data": [], "Spectralscan_mean": [], "Spectralscan_std": [], "Spectralscan_FER": [] } survey_label = [] Spectralscan_label = [] survey_station_info = []
device = 'AP' AP_data = [] for i in range(len(db_collections['collection'])): collection_name = db_collections['collection'][i] for j in range(db_collections['number'][i]): if j==0: db_collection = db_collections['collection'][i] + '-ProcessData' else: db_collection = db_collections['collection'][i] + '-'+ str(j+1) + '-ProcessData' mW = db.mongodb_api(user='******', pwd='ubuntu', database='wifi_diagnosis',collection=db_collection) fdata = mW.find(key_value = {}, ftype='many') for k in range(len(fdata)): AP_data.append(pd.Series(fdata[k]['AP'])) #tmp = pd.Series.transpose(tmp) AP_data = pd.concat(AP_data, axis=1).transpose() #Drop data with no delay values AP_data = AP_data[AP_data.astype(str)['Delay']!='[]'].reset_index(drop='True') AP_data = AP_data[AP_data.astype(str)['SS_Subval']!='[]'].reset_index(drop='True')
return train_data output_folder = '../data/ProcessData1070208' collections = ['1070222-clear-ProcessData'] """ collections = ['1070208small-t1', '1070208small-t1-2', '1070208small-t2', '1070208small-t2-2', '1070208small-t3', '1070208small-t3-2' ] """ for c in collections: m = db.mongodb_api(user='******', pwd='ubuntu', database='wifi_diagnosis', collection=c+'-MLData') found_data = m.find(ftype='many') output_file = c +'.h5' output_path = os.path.join(output_folder,output_file) if not os.path.isdir(output_folder): os.mkdir(output_folder) time_step = 1 time_stride = 1 train_data = gnerate_data_and_label(found_data, data_dict) processed_data = pd.DataFrame.from_dict(train_data) processed_data.to_hdf(output_path, 'raw_data', mode='w')
#label "Ping_mean":[], "Ping_std":[], "FER":[], } train_data = {'AP':copy.deepcopy(data_dict), 'STA':copy.deepcopy(data_dict)} test_data = {'AP':copy.deepcopy(data_dict), 'STA':copy.deepcopy(data_dict)} devices_type = ['AP','STA'] #m = db.mongodb_api(user='******', pwd='ubuntu', collection="ProcessData1061228") m = db.mongodb_api(user='******', pwd='ubuntu', collection="1070208small-t1") found_data = m.find(ftype='many') output_folder = '../data/ProcessData1070208' output_file = 'training_data_mid_5.h5' output_path = os.path.join(output_folder,output_file) if not os.path.isdir(output_folder): os.mkdir(output_folder) training_portion = 0.0 #Portion for training data time_step = 1 time_stride = 1 train_pairs = [] test_pairs = []
if rawdata[key] != test[key]: return False return True def test(self): for idx in range(len(self.found_data)): self.issucess = self.sucess_create_data(idx) and self.issucess return self.issucess #Init mogodb connection and find data m = db.mongodb_api(user='******', pwd='ubuntu', collection='Fingerprint_171101') found_data = m.find(ftype='many') """ #Simple function test test = test_create_data(found_data) print("Data test Result: ", test) """ #Create data dimensions to fix input dimensions #Create label table for one got encode key_pair = [] label_pair = {} label_count = 0 for i in range(len(found_data)): for key in found_data[i]["key"].keys():