Esempio n. 1
0
        '--benchmark',
        action='store_true',
        help="Benchmark the speed of the model + postprocessing")
    parser.add_argument(
        '--config',
        help="A list of KEY=VALUE to overwrite those defined in config.py",
        nargs='+')
    parser.add_argument('--compact', help='Save a model to .pb')
    parser.add_argument('--serving', help='Save a model to serving file')

    args = parser.parse_args()
    if args.config:
        cfg.update_args(args.config)
    register_mot(cfg.DATA.BASEDIR)  # add the mot datasets to the registry

    MODEL = ResNetFPNModel() if cfg.MODE_FPN else ResNetC4Model()

    if not tf.test.is_gpu_available():
        from tensorflow.python.framework import test_util
        assert get_tf_version_tuple() >= (1, 7) and test_util.IsMklEnabled(), \
            "Inference requires either GPU support or MKL support!"
    assert args.load
    finalize_configs(is_training=False)

    if args.predict or args.visualize:
        cfg.TEST.RESULT_SCORE_THRESH = cfg.TEST.RESULT_SCORE_THRESH_VIS

    if args.visualize:
        do_visualize(MODEL, args.load)
    else:
        predcfg = PredictConfig(
Esempio n. 2
0
def main(args):
    # "spawn/forkserver" is safer than the default "fork" method and
    # produce more deterministic behavior & memory saving
    # However its limitation is you cannot pass a lambda function to subprocesses.
    import multiprocessing as mp
    mp.set_start_method('spawn')

    if get_tf_version_tuple() < (1, 6):
        # https://github.com/tensorflow/tensorflow/issues/14657
        logger.warn(
            "TF<1.6 has a bug which may lead to crash in FasterRCNN if you're unlucky."
        )

    # Setup logging ...
    is_horovod = cfg.TRAINER == 'horovod'
    if is_horovod:
        hvd.init()
    if not is_horovod or hvd.rank() == 0:
        logger.set_logger_dir(args.logdir, 'd')
    logger.info("Environment Information:\n" + collect_env_info())

    finalize_configs(is_training=True)

    # Create model
    MODEL = ResNetFPNModel() if cfg.MODE_FPN else ResNetC4Model()

    # Compute the training schedule from the number of GPUs ...
    stepnum = cfg.TRAIN.STEPS_PER_EPOCH
    # warmup is step based, lr is epoch based
    init_lr = cfg.TRAIN.WARMUP_INIT_LR * min(8. / cfg.TRAIN.NUM_GPUS, 1.)
    warmup_schedule = [(0, init_lr), (cfg.TRAIN.WARMUP, cfg.TRAIN.BASE_LR)]
    warmup_end_epoch = cfg.TRAIN.WARMUP * 1. / stepnum
    lr_schedule = [(int(warmup_end_epoch + 0.5), cfg.TRAIN.BASE_LR)]

    factor = 8. / cfg.TRAIN.NUM_GPUS
    for idx, steps in enumerate(cfg.TRAIN.LR_SCHEDULE[:-1]):
        mult = 0.1**(idx + 1)
        lr_schedule.append(
            (steps * factor // stepnum, cfg.TRAIN.BASE_LR * mult))
    logger.info("Warm Up Schedule (steps, value): " + str(warmup_schedule))
    logger.info("LR Schedule (epochs, value): " + str(lr_schedule))
    train_dataflow = get_train_dataflow()
    # This is what's commonly referred to as "epochs"
    total_passes = cfg.TRAIN.LR_SCHEDULE[-1] * 8 / train_dataflow.size()
    logger.info(
        "Total passes of the training set is: {:.5g}".format(total_passes))

    # Create callbacks ...
    callbacks = [
        PeriodicCallback(ModelSaver(max_to_keep=10,
                                    keep_checkpoint_every_n_hours=1),
                         every_k_epochs=cfg.TRAIN.CHECKPOINT_PERIOD),
        # linear warmup
        ScheduledHyperParamSetter('learning_rate',
                                  warmup_schedule,
                                  interp='linear',
                                  step_based=True),
        ScheduledHyperParamSetter('learning_rate', lr_schedule),
        GPUMemoryTracker(),
        HostMemoryTracker(),
        ThroughputTracker(samples_per_step=cfg.TRAIN.NUM_GPUS),
        EstimatedTimeLeft(median=True),
        SessionRunTimeout(60000)  # 1 minute timeout
        #AMLCallback()
        #GPUUtilizationTracker()
    ]
    if cfg.TRAIN.EVAL_PERIOD > 0:
        callbacks.extend([
            EvalCallback(dataset, *MODEL.get_inference_tensor_names(),
                         args.logdir) for dataset in cfg.DATA.VAL
        ])

    if is_horovod and hvd.rank() > 0:
        session_init = None
    else:
        if args.load:
            # ignore mismatched values, so you can `--load` a model for fine-tuning
            session_init = SmartInit(args.load, ignore_mismatch=True)
        else:
            session_init = SmartInit(cfg.BACKBONE.WEIGHTS)

    traincfg = TrainConfig(model=MODEL,
                           data=QueueInput(train_dataflow),
                           callbacks=callbacks,
                           monitors=[AMLMonitor()],
                           steps_per_epoch=stepnum,
                           max_epoch=cfg.TRAIN.LR_SCHEDULE[-1] * factor //
                           stepnum,
                           session_init=session_init,
                           starting_epoch=cfg.TRAIN.STARTING_EPOCH)

    if is_horovod:
        trainer = HorovodTrainer(average=False)
    else:
        # nccl mode appears faster than cpu mode
        trainer = SyncMultiGPUTrainerReplicated(cfg.TRAIN.NUM_GPUS,
                                                average=False,
                                                mode='nccl')
    launch_train_with_config(traincfg, trainer)