def preprocessingDB(trackDB, gtDB, distractor_ids, iou_thres, minvis):
    """
    Preprocess the computed trajectory data.
    Matching computed boxes to groundtruth to remove distractors and low visibility data in both trackDB and gtDB
    trackDB: [npoints, 9] computed trajectory data
    gtDB: [npoints, 9] computed trajectory data
    distractor_ids: identities of distractors of the sequence
    iou_thres: bounding box overlap threshold
    minvis: minimum visibility of groundtruth boxes, default set to zero because the occluded people are supposed to be interpolated for tracking.
    """
    track_frames = np.unique(trackDB[:, 0])
    gt_frames = np.unique(gtDB[:, 0])
    nframes = min(len(track_frames), len(gt_frames))
    res_keep = np.ones((trackDB.shape[0], ), dtype=float)
    for i in range(1, nframes + 1):
        # find all result boxes in this frame
        res_in_frame = np.where(trackDB[:, 0] == i)[0]
        res_in_frame_data = trackDB[res_in_frame, :]
        gt_in_frame = np.where(gtDB[:, 0] == i)[0]
        gt_in_frame_data = gtDB[gt_in_frame, :]
        res_num = res_in_frame.shape[0]
        gt_num = gt_in_frame.shape[0]
        overlaps = np.zeros((res_num, gt_num), dtype=float)
        for gid in range(gt_num):
            overlaps[:, gid] = bbox_overlap(res_in_frame_data[:, 2:6],
                                            gt_in_frame_data[gid, 2:6])
        matched_indices = linear_assignment(1 - overlaps)
        for matched in matched_indices:
            # overlap lower than threshold, discard the pair
            if overlaps[matched[0], matched[1]] < iou_thres:
                continue

            # matched to distractors, discard the result box
            if gt_in_frame_data[matched[1], 1] in distractor_ids:
                res_keep[res_in_frame[matched[0]]] = 0

            # matched to a partial
            if gt_in_frame_data[matched[1], 8] < minvis:
                res_keep[res_in_frame[matched[0]]] = 0

        # sanity check
        frame_id_pairs = res_in_frame_data[:, :2]
        uniq_frame_id_pairs = np.unique(frame_id_pairs)
        has_duplicates = uniq_frame_id_pairs.shape[0] < frame_id_pairs.shape[0]
        assert not has_duplicates, 'Duplicate ID in same frame [Frame ID: %d].' % i
    keep_idx = np.where(res_keep == 1)[0]
    print(
        '[TRACK PREPROCESSING]: remove distractors and low visibility boxes, remaining %d/%d computed boxes'
        % (len(keep_idx), len(res_keep)))
    trackDB = trackDB[keep_idx, :]
    print('Distractors:', distractor_ids)
    #keep_idx = np.array([i for i in xrange(gtDB.shape[0]) if gtDB[i, 1] not in distractor_ids and gtDB[i, 8] >= minvis])
    keep_idx = np.array([i for i in range(gtDB.shape[0]) if gtDB[i, 6] != 0])
    print(
        '[GT PREPROCESSING]: Removing distractor boxes, remaining %d/%d computed boxes'
        % (len(keep_idx), gtDB.shape[0]))
    gtDB = gtDB[keep_idx, :]
    return trackDB, gtDB
Esempio n. 2
0
def my_main(_config):

    print(_config)

    ##########################
    # Initialize the modules #
    ##########################

    print("[*] Beginning evaluation...")

    ###### PFADE ANPASSEN ##########################

    results_dir = osp.join('output/tracktor/MOT17')

    ################################################

    output_dir = osp.join(results_dir, 'eval/det_gaps')
    if not osp.exists(output_dir):
        os.makedirs(output_dir)

    sequences_raw = [
        "MOT17-13",
        "MOT17-11",
        "MOT17-10",
        "MOT17-09",
        "MOT17-05",
        "MOT17-04",
        "MOT17-02",
    ]

    ############### DETECTIONS ANPASSEN #############

    detections = "SDP"

    ################################################

    sequences = ["{}-{}".format(s, detections) for s in sequences_raw]
    #sequences = sequences[:1]

    #tracker = ["FRCNN_Base", "HAM_SADF17", "MOTDT17", "EDMT17", "IOU17", "MHT_bLSTM", "FWT_17", "jCC", "MHT_DAM_17"]
    tracker = ["Tracktor", "Tracktor++", "FWT", "jCC", "MOTDT17", "MHT_DAM"]
    #tracker = ["Baseline"]
    # "PHD_GSDL17" does not work, error
    #tracker = tracker[-4:]

    results = []
    det_gaps = []
    for t in tracker:
        print("[*] Evaluating {}".format(t))
        det_gaps_coverage = []
        for s in sequences:
            ########################################
            # Get DPM / GT coverage for each track #
            ########################################

            ###### PFADE ANPASSEN ##############################################

            gt_file = osp.join("data/MOT17Labels", "train", s, "gt", "gt.txt")
            det_file = osp.join("data/MOT17Labels", "train", s, "det",
                                "det.txt")
            res_file = osp.join("output/tracktor/MOT17", t, s + ".txt")

            ####################################################################

            #gtDB = read_txt_to_struct(gt_file)
            #gtDB = gtDB[gtDB[:,7] == 1]

            stDB = read_txt_to_struct(res_file)
            gtDB = read_txt_to_struct(gt_file)
            dtDB = read_txt_to_struct(det_file)

            gtDB, distractor_ids = extract_valid_gt_data(gtDB)
            print(s)
            print(len(np.unique(gtDB[:, 1])))
            _, M, gtDB = evaluate_new(stDB, gtDB, distractor_ids)
            print(len(np.unique(gtDB[:, 1])))

            gt_ids_old = np.unique(gtDB[:, 1])
            # reaload gtDB as entries not found are deleted
            gtDB = read_txt_to_struct(gt_file)
            # filter out so that confidence and id = 1
            gtDB = gtDB[gtDB[:, 7] == 1]
            gtDB = gtDB[gtDB[:, 6] == 1]

            gt_frames = np.unique(gtDB[:, 0])
            #st_ids = np.unique(stDB[:, 1])
            #gt_ids = np.unique(gtDB[:, 1])
            #dt_ids = np.unique(dtDB[:, 1]) # id always -1
            f_gt = len(gt_frames)
            #n_gt = len(gt_ids)
            #n_st = len(st_ids)

            gt_inds = [{} for i in range(f_gt)]
            #st_inds = [{} for i in range(f_gt)]
            dt_inds = [{} for i in range(f_gt)]

            D = [{} for i in range(f_gt)]  #map detections to gt

            m_keys = []
            for v in M:
                m_keys.append(list(v.keys()))
            #print("new: {}".format(np.unique(gtDB[:, 1])))
            #print("old: {}".format(gt_ids_old))
            #print("M: {}".format(np.unique(m_keys)))

            # hash the indices to speed up indexing
            #for i in range(gtDB.shape[0]):
            #    frame = np.where(gt_frames == gtDB[i, 0])[0][0]
            #    gid = np.where(gt_ids == gtDB[i, 1])[0][0]
            #    gt_inds[frame][gid] = i

            for i in range(gtDB.shape[0]):
                frame = np.where(gt_frames == gtDB[i, 0])[0][0]
                gt_id = gtDB[i, 1]
                gt_inds[frame][gt_id] = i

            gt_frames_list = list(gt_frames)
            """
            for i in range(stDB.shape[0]):
                # sometimes detection missed in certain frames, thus should be assigned to groundtruth frame id for alignment
                frame = gt_frames_list.index(stDB[i, 0])
                sid = np.where(st_ids == stDB[i, 1])[0][0]
                st_inds[frame][sid] = i
            """

            for i in range(dtDB.shape[0]):
                # sometimes detection missed in certain frames, thus should be assigned to groundtruth frame id for alignment
                frame = gt_frames_list.index(dtDB[i, 0])
                # id always -1, so just make up numer, not important here
                did = 0
                if len(dt_inds[frame]) > 0:
                    did = max(dt_inds[frame].keys()) + 1
                #did = np.where(dt_ids == dtDB[i, 1])[0][0]
                dt_inds[frame][did] = i

            # find detections <-> gt
            for frame in range(f_gt):
                gt_id = list(gt_inds[frame].keys())
                gt_i = list(gt_inds[frame].values())
                gt_boxes = gtDB[gt_i, 2:6]
                #print(gt_id)

                dt_id = list(dt_inds[frame].keys())
                dt_i = list(dt_inds[frame].values())
                dt_boxes = dtDB[dt_i, 2:6]
                #print(len(dt_id))

                overlaps = np.zeros((len(dt_i), len(gt_i)), dtype=float)
                for i in range(len(gt_i)):
                    overlaps[:, i] = bbox_overlap(dt_boxes, gt_boxes[i])
                matched_indices = linear_assignment(1 - overlaps)

                for matched in matched_indices:
                    if overlaps[matched[0], matched[1]] >= 0.5:
                        did = dt_id[matched[0]]
                        gid = gt_id[matched[1]]
                        # gid in this case is the real gt id as it comes from the new gtDB
                        D[frame][gid] = did

            for frame in range(f_gt):
                d = D[frame]
                for gt_id, _ in d.items():

                    gid = -1
                    gid_ind = np.where(gt_ids_old == gt_id)[0]
                    if len(gid_ind) > 0:
                        gid = gid_ind[0]

                    # every gap is only handled once, at the last detection before the gap begins
                    # so here we are in the middle of the gap => do nothing
                    if gt_id not in d.keys():
                        continue

                    # OK let's check if we have a gap in the detections
                    next_non_empty = -1
                    for j in range(frame + 1, f_gt):
                        if gt_id in D[j].keys():
                            next_non_empty = j
                            break

                    # no gap as no more detections, or no gap as next frame has detection
                    if next_non_empty == -1 or next_non_empty == frame + 1:
                        continue

                    # now we have a gap in detections. Let's check the gap length and track coverage!
                    gap_length = next_non_empty - frame - 1
                    count_tracked = 0
                    for j in range(frame + 1, next_non_empty):
                        if gid in M[j].keys():
                            count_tracked += 1

                    if gap_length > 115 and gap_length < 135:
                        print(count_tracked)

                    det_gaps_coverage.append(
                        [gap_length, count_tracked / gap_length])

                    # also add to gt distribution
                    if t == tracker[0]:
                        det_gaps.append(gap_length)
            """

            # Now check all detections if they were tracked
            for frame in range(f_gt):
                matched_dets = D[frame]

                for did, gid in matched_dets.items():
                    # not matched by tracker, get visbility
                    line = gt_inds[frame][gid]
                    vis = gtDB[line, 8]

                    # if matched only visibility is important
                    if gid in M[frame].keys():
                        tracked_visibilities.append(vis)
                        continue
                    else:
                        missed_visibilities.append(vis)

                    # get distance to last time tracked
                    last_non_empty = frame
                    for j in range(frame, -1, -1):
                        if gid in M[j].keys():
                            last_non_empty = j
                            break
                    next_non_empty = frame
                    for j in range(frame, f_gt):
                        if gid in M[j]:
                            next_non_empty = j
                            break

                    dist = min(frame-last_non_empty, next_non_empty-frame)
                    # check if not tracked at all ...
                    if dist > 0:
                        missed_distances.append(dist)"""

        det_gaps_coverage = np.array(det_gaps_coverage)
        results.append(det_gaps_coverage)
        #gaps = np.unique(det_gaps_coverage[:,0])
        #coverage = np.zeros(gaps.shape[0])

        #for i,g in enumerate(gaps):
        #    covs = det_gaps_coverage[det_gaps_coverage[:,0] == g, 1]
        #    coverage[i] = np.mean(covs)
        print("    Gaps: {}".format(len(det_gaps_coverage)))
        print("    Gaps>20 with coverage>0.8: {}".format(
            ((det_gaps_coverage[:, 1] > 0.8) *
             (det_gaps_coverage[:, 0] > 20)).sum()))

        #plt.figure()

        #sns.regplot(x=gaps, y=coverage, ci=None, scatter=True, scatter_kws={"s": 5}, line_kws={"linewidth":1.0}, lowess=True, label=t)

        #plt.legend()

        #plt.ylabel('coverage of gap by tracker')
        #plt.xlim((0,x_max))
        #plt.xlabel('gap length in detections')
        #plt.legend()
        #plt.savefig(osp.join(output_dir, "{}-{}-{}.pdf".format('DET_GAP_COV', detections, t)), format='pdf')

        #plt.plot([0,1], [0,1], 'r-')
        """
        plt.figure()
        plt.hist(tracked_visibilities, bins=20, density=False)
        plt.ylabel('occurence')
        plt.xlabel('visibility of target')
        plt.title('Boxes total: {}'.format(len(tracked_visibilities)))
        plt.savefig(osp.join(output_dir, "{}-{}-{}.pdf".format(t, detections, 'TR_VIS')), format='pdf')


        #plt.plot([0,1], [0,1], 'r-')
        weights = np.zeros(missed_gaps_length.shape)
        for i in range(missed_gaps_length.shape[0]):
            weights[i] = 1/missed_gaps_length[i]
            #weights[i] = 1
        plt.figure()
        #plt.xlim((0, 40))
        bins = list(range(40))
        plt.hist(missed_gaps_length, weights=weights, bins=bins, density=False)
        plt.ylabel('occurence')
        plt.xlabel('gap length in tracks')
        plt.savefig(osp.join(output_dir, "{}-{}-{}.pdf".format('MISS_DIST', t, detections)), format='pdf')

        x = np.arange(1,41)
        y = np.zeros(len(x))
        ges_occurencies = 0
        for i,b in enumerate(x):
            occurencies = int((missed_gaps_length==b).sum())
            occurencies = occurencies/b
            ges_occurencies += occurencies
            y[i] = occurencies
        #y = y/ges_occurencies
        y_poly = np.poly1d(np.polyfit(x, y, 5))
        poly_missed_gaps_length.append(y_poly)


        plt.figure()
        plt.hist(missed_visibilities, bins=20, density=False)
        plt.ylabel('occurence')
        #plt.xlim((0, xmax))
        plt.xlabel('visibility of target')
        plt.title('Boxes total: {}'.format(len(missed_visibilities)))
        plt.savefig(osp.join(output_dir, "{}-{}-{}.pdf".format(t, detections, 'MISS_VIS')), format='pdf')
        plt.close()

        # combined plot
        plt.figure()
        plt.hist([tracked_visibilities, missed_visibilities], bins=20, density=True, label=['tracked', 'missed'])
        plt.ylabel('occurence')
        plt.xlabel('visibility of target')
        plt.legend()
        #plt.title('Boxes total: {}'.format(len(tracked_visibilities)))
        plt.savefig(osp.join(output_dir, "{}-{}-{}.pdf".format('VIS', t, detections)), format='pdf')

        # height 0.9 <= vis <= 1.0
        tracked_visibilities_heights = tracked_visibilities_heights[tracked_visibilities >= 0.9]
        missed_visibilities_heights = missed_visibilities_heights[missed_visibilities >= 0.9]
        plt.figure()
        plt.hist([tracked_visibilities_heights, missed_visibilities_heights], bins=15, density=True, label=['tracked', 'missed'])
        plt.ylabel('occurence')
        plt.xlabel('height of targets')
        plt.legend()
        #plt.title('Boxes total: {}'.format(len(tracked_visibilities)))
        plt.savefig(osp.join(output_dir, "{}-{}-{}.pdf".format('HEIGHTS', t, detections)), format='pdf')
        """
    """
    plt.figure()
    x_new = np.linspace(0, x_max, num=101, endpoint=True)
    for y,t in zip(y_poly_list, tracker):
        plt.plot(x_new, y_poly(x_new), label=t)
    plt.ylabel('coverage of gap by tracker')
    plt.xlim((0,x_max))
    plt.xlabel('gap length in detections')
    plt.legend()
    plt.savefig(osp.join(output_dir, "ALL-{}-{}.pdf".format(detections, 'DET_GAP_COV')), format='pdf')
    """

    #plt.legend()

    #plt.ylabel('coverage of gap by tracker')
    #plt.xlim((0,x_max))
    #plt.xlabel('gap length in detections')
    #plt.legend()
    #plt.savefig(osp.join(output_dir, "ALL-{}-{}_xmax20.pdf".format('DET_GAP_COV', detections)), format='pdf')

    ########### AB HIER INTERESSANT FÜR DICH ##############################

    # generate bins
    x_max = 30
    n_bins = 8
    fontsize = 16
    tickfontsize = 12

    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')

    step_size = (x_max - np.min(det_gaps)) / n_bins
    bins = np.arange(0, n_bins) * step_size + np.min(det_gaps)

    fig, ax1 = plt.subplots()
    plt.tick_params(labelsize=tickfontsize)
    ax1.spines['top'].set_visible(False)
    bar_width = (0.7 * step_size) / len(tracker)

    det_gaps = np.array(det_gaps)
    det_gaps = det_gaps[det_gaps < x_max]

    for t in range(len(tracker)):
        ratios = np.zeros(bins.shape[0])
        data = results[t]
        print("Datapoints: {}".format(data.shape[0]))
        data = data[data[:, 0] < x_max]
        #print("After filter: {}".format(data.shape[0]))
        for i in range(bins.shape[0]):
            lower = bins[i]
            print("BIN: {}".format(lower))
            tmp = data[data[:, 0] >= lower]
            #print("After lower: {}".format(tmp.shape[0]))
            if i != bins.shape[0] - 1:
                upper = bins[i + 1]
                tmp = tmp[tmp[:, 0] < upper]
            print("Datapoints in bin: {}".format(tmp.shape[0]))
            ratios[i] = np.mean(tmp[:, 1])
            #ratios[i] = np.median(data[:,1])
        #print(ratios)
        dis = (t - (len(tracker) - 1) / 2) * bar_width
        plt.bar(bins + step_size / 2 + dis,
                ratios,
                bar_width,
                align='center',
                label=tracker[t].replace('_', '\_'))
    color = 'black'
    if "FRCNN" in detections:
        color = 'white'
    if "SDP" in detections:
        color = 'white'
    plt.ylabel('Tracked objects [\%]', fontsize=fontsize, color=color)
    plt.xlim((np.min(det_gaps), x_max))
    plt.ylim((0, 1.0))
    color = 'black'
    if "DPM" in detections:
        color = 'white'
    if "SDP" in detections:
        color = 'white'
    plt.xlabel('Gap length in public detections',
               fontsize=fontsize,
               color=color)
    if "FRCNN" in detections:
        plt.legend(loc='upper right', fontsize=tickfontsize)

    ax2 = ax1.twinx()
    ax2.spines['top'].set_visible(False)
    #sns.kdeplot(det_gaps, cut=0, color="red", shade=True, linewidth=0)
    sns.distplot(det_gaps,
                 bins=8,
                 color="red",
                 norm_hist=False,
                 ax=ax2,
                 kde=False,
                 hist_kws={
                     "rwidth": 0.95,
                     'range': (np.min(det_gaps), x_max)
                 })
    ax2.tick_params(labelsize=tickfontsize)

    #plt.setp(ax2.get_yticklabels(), visible=False)
    #ax2.tick_params(axis='y', which='both', length=0)
    color = 'black'
    if "DPM" in detections:
        color = 'white'
    if "FRCNN" in detections:
        color = 'white'
    ax2.set_ylabel('Occurrences in detections', fontsize=fontsize, color=color)

    ax2.set_zorder(1)
    ax1.set_zorder(2)
    ax1.patch.set_visible(False)

    plt.savefig(osp.join(output_dir,
                         "BAR-{}-{}.pdf".format('DET_GAP_COV', detections)),
                format='pdf',
                bbox_inches='tight')
def my_main(_config):

    print(_config)

    ##########################
    # Initialize the modules #
    ##########################

    print("[*] Beginning evaluation...")
    output_dir = osp.join(get_output_dir('MOT_analysis'), 'coverage')

    sequences_raw = [
        "MOT17-13",
        "MOT17-11",
        "MOT17-10",
        "MOT17-09",
        "MOT17-05",
        "MOT17-04",
        "MOT17-02",
    ]
    detections = "DPM"
    sequences = ["{}-{}".format(s, detections) for s in sequences_raw]

    tracker = [
        "FRCNN", "DMAN", "HAM_SADF17", "MOTDT17", "EDMT17", "IOU17",
        "MHT_bLSTM", "FWT_17", "jCC", "MHT_DAM_17"
    ]
    #tracker = ["DMAN"]

    for t in tracker:
        print("[*] Evaluating {}".format(t))
        data_points = []
        for s in sequences:
            ########################################
            # Get DPM / GT coverage for each track #
            ########################################

            gt_file = osp.join(cfg.DATA_DIR, "MOT17Labels", "train", s, "gt",
                               "gt.txt")
            dpm_file = osp.join(cfg.DATA_DIR, "MOT17Labels", "train", s, "det",
                                "det.txt")

            gtDB = read_txt_to_struct(gt_file)
            dpmDB = read_txt_to_struct(dpm_file)

            gtDB, distractor_ids = extract_valid_gt_data(gtDB)
            dpmDB, gtDB = preprocessingDB(dpmDB, gtDB, distractor_ids, 0.5, 0)

            gt_ids = np.unique(gtDB[:, 1])

            gt_ges = {int(i): 0 for i in gt_ids}
            gt_matched = {int(i): 0 for i in gt_ids}
            gt_tracked = {int(i): 0 for i in gt_ids}

            track_frames = np.unique(dpmDB[:, 0])
            gt_frames = np.unique(gtDB[:, 0])
            nframes = min(len(track_frames), len(gt_frames))
            res_keep = np.ones((dpmDB.shape[0], ), dtype=float)
            for i in range(1, nframes + 1):
                # find all result boxes in this frame
                res_in_frame = np.where(dpmDB[:, 0] == i)[0]
                res_in_frame_data = dpmDB[res_in_frame, :]
                gt_in_frame = np.where(gtDB[:, 0] == i)[0]
                gt_in_frame_data = gtDB[gt_in_frame, :]

                #for gt in gt_in_frame_data:
                #    gt_ges[int(gt[1])] += 1

                res_num = res_in_frame.shape[0]
                gt_num = gt_in_frame.shape[0]
                overlaps = np.zeros((res_num, gt_num), dtype=float)
                for gid in range(gt_num):
                    overlaps[:, gid] = bbox_overlap(res_in_frame_data[:, 2:6],
                                                    gt_in_frame_data[gid, 2:6])
                matched_indices = linear_assignment(1 - overlaps)
                for matched in matched_indices:
                    # overlap lower than threshold, discard the pair
                    if overlaps[matched[0], matched[1]] > 0.5:
                        gt_id = int(gt_in_frame_data[matched[1], 1])
                        gt_matched[gt_id] += 1

            for k in gt_ids:
                gt_ges[k] = len(np.where(gtDB[:, 1] == k)[0])
                gt_tracked[k] = gt_matched[k] / gt_ges[k]

            res_file = osp.join(output_dir, t, s + ".txt")

            gtDB = read_txt_to_struct(gt_file)
            trackDB = read_txt_to_struct(res_file)
            gtDB, distractor_ids = extract_valid_gt_data(gtDB)
            trackDB, gtDB = preprocessingDB(trackDB, gtDB, distractor_ids, 0.5,
                                            0)

            tr_matched = {int(i): 0 for i in gt_ids}
            tr_tracked = {int(i): 0 for i in gt_ids}

            track_frames = np.unique(trackDB[:, 0])
            gt_frames = np.unique(gtDB[:, 0])
            nframes = min(len(track_frames), len(gt_frames))
            res_keep = np.ones((trackDB.shape[0], ), dtype=float)
            for i in range(1, nframes + 1):
                # find all result boxes in this frame
                res_in_frame = np.where(trackDB[:, 0] == i)[0]
                res_in_frame_data = trackDB[res_in_frame, :]
                gt_in_frame = np.where(gtDB[:, 0] == i)[0]
                gt_in_frame_data = gtDB[gt_in_frame, :]

                res_num = res_in_frame.shape[0]
                gt_num = gt_in_frame.shape[0]
                overlaps = np.zeros((res_num, gt_num), dtype=float)
                for gid in range(gt_num):
                    overlaps[:, gid] = bbox_overlap(res_in_frame_data[:, 2:6],
                                                    gt_in_frame_data[gid, 2:6])
                matched_indices = linear_assignment(1 - overlaps)
                for matched in matched_indices:
                    # overlap lower than threshold, discard the pair
                    if overlaps[matched[0], matched[1]] > 0.5:
                        gt_id = int(gt_in_frame_data[matched[1], 1])
                        tr_matched[gt_id] += 1

            for k in gt_ids:
                data_points.append([gt_tracked[k], tr_matched[k] / gt_ges[k]])

        data_points = np.array(data_points)
        # add mean values
        grid_step = 0.02
        grid = np.arange(-grid_step / 2, 1.0 + grid_step, grid_step)
        x_mean = np.arange(0.0, 1.0 + grid_step, grid_step)
        bins = int(1.0 / grid_step) + 1
        y_mean = np.zeros(bins)
        y_std = np.zeros(bins)
        for i in range(bins):
            vals = (data_points[:, 0] >= grid[i]) * (data_points[:, 0] <
                                                     grid[i + 1])
            mean = np.mean(data_points[vals, 1])
            y_mean[i] = mean
            y_std[i] = np.sqrt(np.mean((vals - mean)**2))

        y_poly = np.poly1d(np.polyfit(x_mean, y_mean, 5))
        x_new = np.linspace(0, 1, num=101, endpoint=True)

        area = simps(y_poly(x_new), x_new)

        plt.plot(x_new, y_poly(x_new), label="{} {:.3f}".format(t, area))
        #plt.errorbar(x_mean, y_poly(x_mean), yerr=y_std, fmt='o')
        #if t == "FRCNN":
        #    plt.plot(x_mean, y_mean)
        #plt.plot([0,1], [0,1], 'r-')
        #plt.scatter(data_points[:,0], data_points[:,1], s=2**2)
        #plt.xlabel('{} coverage'.format(detections))
        #plt.ylabel('tracker coverage')
        #plt.savefig(osp.join(output_dir, "{}-{}.pdf".format(t, detections)), format='pdf')
        #plt.close()

    plt.plot([0, 1], [0, 1], 'r-')
    plt.legend()
    plt.xlabel('{} coverage'.format(detections))
    plt.ylabel('tracker coverage')
    plt.savefig(osp.join(output_dir, "coverage-{}.pdf".format(detections)),
                format='pdf')
    plt.close()