import matplotlib.pyplot as plt import torch import argparse import numpy as np from mpl_toolkits.axes_grid1 import make_axes_locatable from reversible import ReversibleModel from audio_midi_dataset import get_dataset_individually, Spec2MidiDataset, SqueezingDataset from torch.utils.data.dataloader import DataLoader from torch.utils.data.sampler import SequentialSampler from train_loop import normal_noise_like import os import re import mpl_rc import utils import pretty_midi as pm RCPARAMS = mpl_rc.default() def collect_samples(device, model, loader, n_samples): model.eval() samples_x_true = [] samples_x_pred = [] for si in range(n_samples): x_true = [] x_pred = [] for batch in loader: x = batch['x'] y = batch['y'] y = y + normal_noise_like(y, model.y_noise_scale) # tiny exaggeration
import matplotlib.pyplot as plt import torch import argparse import numpy as np from plot_input_output import plot_input_output from reversible import ReversibleModel from audio_midi_dataset import get_dataset_individually, Spec2MidiDataset, SqueezingDataset from torch.utils.data.dataloader import DataLoader from torch.utils.data.sampler import SequentialSampler from train_loop import normal_noise_like import os import mpl_rc import utils rcParams = mpl_rc.default() START = 100 END = 150 def collect_input_output(device, model, loader, n_samples): model.eval() samples_x_true = [] samples_x_invs = [] samples_x_edit = [] samples_x_zepa = [] samples_x_samp = [] samples_y_true = [] samples_y_pred = [] samples_y_edit = []