Esempio n. 1
0
def demo_fixed_pad_axes():

    fig = plt.figure(2, (6, 6))

    # The first & third items are for padding and the second items are for the axes.
    # sizes are in inch.
    h = [
        Size.Fixed(1.0),
        Size.Scaled(1.),
        Size.Fixed(.2),
    ]
    v = [
        Size.Fixed(0.7),
        Size.Scaled(1.),
        Size.Fixed(.5),
    ]

    divider = Divider(fig, (0.0, 0.0, 1., 1.), h, v, aspect=False)
    # the width and height of the rectangle is ignored.

    ax = LocatableAxes(fig, divider.get_position())
    ax.set_axes_locator(divider.new_locator(nx=1, ny=1))

    fig.add_axes(ax)

    ax.plot([1, 2, 3])
Esempio n. 2
0
    def metric_svg(self,
                   host=None,
                   title="undefined",
                   ylabel="undefined",
                   metrics=[],
                   b64encode=True):
        fig = pyplot.figure(figsize=self.FIGSIZE)

        h = [Size.Fixed(1.2), Size.Scaled(1.), Size.Fixed(.2)]
        v = [Size.Fixed(0.7), Size.Scaled(1.), Size.Fixed(.5)]

        divider = Divider(fig, (0.0, 0.0, 1., 1.), h, v, aspect=False)
        plt = Axes(fig, divider.get_position())
        plt.set_axes_locator(divider.new_locator(nx=1, ny=1))

        fig.add_axes(plt)

        result = self.result
        runinfo = result.runinfo

        # ----
        # The X limits are -rampupMins, runMins
        # ----
        plt.set_xlim(-int(runinfo['rampupMins']), int(runinfo['runMins']))
        plt.axvspan(-int(runinfo['rampupMins']), 0, facecolor='0.2', alpha=0.1)

        # ----
        # Draw all the requested graphs
        # ----
        x = None
        for m in metrics:
            if x is None:
                x, y = self._get_metric_tree(m)
            else:
                _, y = self._get_metric_tree(m, x)

            plt.plot(x, y, m['color'], label=m['label'])

        # ----
        # Title and labels
        # ----
        plt.set_title(title)
        plt.set_xlabel("Elapsed Minutes")
        plt.set_ylabel(ylabel)
        plt.legend(loc='upper left')
        plt.grid()

        # ----
        # Now turn this into an in-memory SVG and return it as requested
        # (raw or b64-encoded)
        # ----
        buf = io.StringIO()
        pyplot.savefig(buf, format='svg')

        if not b64encode:
            return buf.getvalue()
        return base64.b64encode(buf.getvalue().encode('utf-8')).decode('utf-8')
Esempio n. 3
0
def plot_it():
    # fig = plt.figure(1, figsize=(8, 4.5))
    fig = plt.figure(1, figsize=(16, 12))
    # h = [Size.Fixed(0.), Size.Fixed(6.5)]
    # v = [Size.Fixed(0.5), Size.Fixed(3.25)]
    h = [Size.Fixed(0.), Size.Fixed(13)]
    v = [Size.Fixed(0.5), Size.Fixed(7)]
    win = Divider(fig, (0.1, 0.08, 0.8, 0.8), h, v, aspect=False)
    ax = Axes(fig, win.get_position())
    ax.set_axes_locator(win.new_locator(nx=1, ny=1))
    fig.add_axes(ax)
    # fig = plt.figure(figsize=(16, 12))
    # ax = fig.add_subplot(111)
    for ii, ellipse in enumerate(ellipses):
        ax.fill(ellipse[0], ellipse[1], color=cmap(norm_vals[ii]), zorder=0)
        ax.plot(ellipse[0], ellipse[1], 'k-', linewidth=0.2)
    ax.invert_yaxis()
    plt.xlabel('Northing (km)', fontsize=16)
    plt.ylabel(r'$\log_{10}$ Period (s)', fontsize=16)
    # ax.set_aspect(1)
    ax.tick_params(axis='both', labelsize=14)
    # locs, labels = plt.xticks()
    # plt.xticks(locs, [int(x * 10) for x in locs])
    fake_vals = np.linspace(lower, upper, len(fill_vals))
    fake_im = ax.scatter(loc, periods, c=fake_vals, cmap=cmap)
    fake_im.set_visible(False)
    # ax.set_ylim([-2.6, 3.25])
    # ax.set_xlim([526.5, 538.2])
    # ax.invert_yaxis()
    # cb = plt.colorbar(mappable=fake_im)
    #############################################
    # Colour bar and site labelling
    # cbaxes = fig.add_axes([0.925, 0.1351, 0.015, 0.72])
    # cb = plt.colorbar(fake_im)
    # if 'phi' in fill_param[:3]:
    #     label = r'${}{}(\degree)$'.format('\phi', fill_param[-2:])
    # else:
    #     label = r'$\{}(\degree)$'.format(fill_param)
    # cb.set_label(label,
    #              rotation=270,
    #              labelpad=20,
    #              fontsize=18)
    # ax.tick_params(axis='both', labelsize=14)
    # ax.set_xlim(x_lim)
    # for ii, site in enumerate(main_sites):
    #     txt = site[-4:-1]
    #     if linear_xaxis:
    #         ax.text(linear_site[ii],
    #                 label_offset, site, rotation=45)  # 3.6
    #     else:
    #         ax.text(main_transect.sites[site].locations['X'],
    #                 label_offset, site, rotation=45)  # 3.6

    plt.show()
    return fig
Esempio n. 4
0
    def __init__(self,
                 ax_size,
                 wspace,
                 dpi,
                 cbar,
                 cbar_width,
                 left,
                 bottom,
                 right,
                 top,
                 fig_func=None):
        if not cbar:
            wspace = 0
            cbar_width = 0

        # convert arguments from pixels to inches
        ax_size = np.asarray(ax_size) / dpi
        wspace, cbar_width, left, bottom, right, top = np.array(
            (wspace, cbar_width, left, bottom, right, top)) / dpi

        horiz = [left, ax_size[0], wspace, cbar_width, right]
        vert = [bottom, ax_size[1], top]

        figsize = (sum(horiz), sum(vert))
        fig_func = plt.figure if fig_func is None else fig_func
        fig = fig_func(figsize=figsize, dpi=dpi)

        horiz, vert = list(map(Size.Fixed, horiz)), list(map(Size.Fixed, vert))
        divider = Divider(fig, (0.0, 0.0, 1., 1.), horiz, vert, aspect=False)

        ax = LocatableAxes(fig, divider.get_position())
        ax.set_axes_locator(divider.new_locator(nx=1, ny=1))
        fig.add_axes(ax)

        if cbar:
            cax = LocatableAxes(fig, divider.get_position())
            cax.set_axes_locator(divider.new_locator(nx=3, ny=1))
            fig.add_axes(cax)

        self.fig = fig
        self.ax = ax
        self.cax = cax if cbar else None
def demo_fixed_pad_axes():
    fig = plt.figure(2, (6, 6))

    # The first & third items are for padding and the second items are for the
    # axes. Sizes are in inches.
    h = [Size.Fixed(1.0), Size.Scaled(1.), Size.Fixed(.2)]
    v = [Size.Fixed(0.7), Size.Scaled(1.), Size.Fixed(.5)]

    divider = Divider(fig, (0.0, 0.0, 1., 1.), h, v, aspect=False)
    # the width and height of the rectangle is ignored.

    ax = LocatableAxes(fig, divider.get_position())
    ax.set_axes_locator(divider.new_locator(nx=1, ny=1))

    fig.add_axes(ax)

    ax.plot([1, 2, 3])
def demo_fixed_size_axes():
    fig = plt.figure(figsize=(6, 6))

    # The first items are for padding and the second items are for the axes.
    # sizes are in inch.
    h = [Size.Fixed(1.0), Size.Fixed(4.5)]
    v = [Size.Fixed(0.7), Size.Fixed(5.)]

    divider = Divider(fig, (0.0, 0.0, 1., 1.), h, v, aspect=False)
    # the width and height of the rectangle is ignored.

    ax = Axes(fig, divider.get_position())
    ax.set_axes_locator(divider.new_locator(nx=1, ny=1))

    fig.add_axes(ax)

    ax.plot([1, 2, 3])
Esempio n. 7
0
def demo_fixed_size_axes():
    fig1 = plt.figure(1, (10, 5))

    # The first items are for padding and the second items are for the axes.
    # sizes are in inch.
    h = [Size.Fixed(1.0), Size.Fixed(7.5)]
    v = [Size.Fixed(0.7), Size.Fixed(4.5)]

    divider = Divider(fig1, (0.0, 0.0, 1., 1.), h, v, aspect=False)
    # the width and height of the rectangle is ignored.

    ax = LocatableAxes(fig1, divider.get_position())
    ax.set_axes_locator(divider.new_locator(nx=1, ny=1))

    fig1.add_axes(ax)

    ax.plot([1, 2, 3])
Esempio n. 8
0
def fix_sz_fig(width, height, width_ext=2, padding=.5):
    # These code is to make fixed size article
    # Makesure matplotlib can draw Chinese characters
    plt.rcParams['font.sans-serif'] = ['SimHei']
    # Init figure
    fig = plt.figure(figsize=(width + 2 * padding + width_ext,
                              height + 2 * padding))
    # The first items are for padding and the second items are for the axes.
    # Article width and height
    w = [Size.Fixed(padding), Size.Fixed(width)]
    h = [Size.Fixed(padding), Size.Fixed(height)]
    divider = Divider(fig, (0.0, 0.0, 1., 1.), w, h, aspect=False)
    # the width and height of the rectangle is ignored.
    ax = Axes(fig, divider.get_position())
    ax.set_axes_locator(divider.new_locator(nx=1, ny=1))
    fig.add_axes(ax)

    return fig, ax
Esempio n. 9
0
def create_plot(two_sided=False,
                colors=[
                    '#6F4C9B', '#5568B8', '#4D8AC6', '#60AB9E', '#77B77D',
                    '#A6BE54', '#D1B541', '#E49C39', '#DF4828', '#990D38'
                ],
                markers=['o', 'v', '^', 's', 'D', '*'],
                figsize=(5, 3.4)):
    """
    Crée un environnement de plot

    Parameters
    ----------
    twosided : bool
        allows to change the size of the figure accordingly.
    colors : list of strings
        a default list exists but this allows to change it if u want
    markers : list of strings
        a default list of markers exists, but u can change it if needed
    Returns
    -------
    fig, ax : matplotlib objects to be used as normal

    """
    color = cycle(colors)
    marker = cycle(markers)
    if two_sided:
        fig = plt.figure(figsize=(3.4, 3.4))
    else:
        fig = plt.figure(figsize=figsize)
    # The first & third items are for padding and the second items are for the
    # axes. Sizes are in inches.
    h = [Size.Fixed(1.0), Size.Scaled(1.), Size.Fixed(.2)]
    v = [Size.Fixed(0.7), Size.Scaled(1.), Size.Fixed(.5)]

    divider = Divider(fig, (0.0, 0.0, 1., 1.), h, v, aspect=False)
    # the width and height of the rectangle is ignored.

    ax = Axes(fig, divider.get_position())
    ax.set_axes_locator(divider.new_locator(nx=1, ny=1))

    fig.add_axes(ax)
    return fig, ax, color, marker
Esempio n. 10
0
class MatPlotLibBase(QWidget):
    def __init__(self,
                 parent,
                 file_dialog_service,
                 h_margin=(0.8, 0.1),
                 v_margin=(0.5, 0.15),
                 h_axes=[Size.Scaled(1.0)],
                 v_axes=[Size.Scaled(1.0)],
                 nx_default=1,
                 ny_default=1):
        QWidget.__init__(self, parent)
        self._file_dialog_service = file_dialog_service
        self._figure = Figure()
        self._canvas = FigureCanvas(self._figure)
        h = [Size.Fixed(h_margin[0]), *h_axes, Size.Fixed(h_margin[1])]
        v = [Size.Fixed(v_margin[0]), *v_axes, Size.Fixed(v_margin[1])]
        self._divider = Divider(self._figure, (0.0, 0.0, 1.0, 1.0),
                                h,
                                v,
                                aspect=False)
        self._axes = LocatableAxes(self._figure, self._divider.get_position())
        self._axes.set_axes_locator(
            self._divider.new_locator(nx=nx_default, ny=ny_default))
        self._axes.set_zorder(2)
        self._axes.patch.set_visible(False)
        for spine in ['top', 'right']:
            self._axes.spines[spine].set_visible(False)
        self._figure.add_axes(self._axes)

        self._canvas.setParent(self)

        self._layout = QVBoxLayout(self)
        self._layout.setContentsMargins(0, 0, 0, 0)
        self._layout.addWidget(self._canvas)
        self.setLayout(self._layout)

        self._figure.canvas.mpl_connect('scroll_event', self._on_scroll)
        self._xy_extents = None
        self._background_cache = None
        self._decoration_artists = []
        self._is_panning = False

        self._zoom_selector = _RectangleSelector(self._axes,
                                                 self._zoom_selected)
        self._zoom_selector.set_active(False)
        self._x_extent_padding = 0.01
        self._y_extent_padding = 0.01
        self._axes.ticklabel_format(style='sci', axis='x', scilimits=(-4, 4))
        self._axes.ticklabel_format(style='sci', axis='y', scilimits=(-4, 4))
        self._active_tools = {}
        self._span = _SpanSeletor(self._axes,
                                  self._handle_span_select,
                                  'horizontal',
                                  rectprops=dict(alpha=0.2,
                                                 facecolor='red',
                                                 edgecolor='k'),
                                  span_stays=True)
        self._span.set_on_select_none(self._handle_span_select_none)
        self.span = self._previous_span = None
        self._span_center_mouse_event = None
        self._span_left_mouse_event = None
        self._span_right_mouse_event = None
        self._figure.canvas.mpl_connect('button_press_event',
                                        self._handle_press)
        self._figure.canvas.mpl_connect('motion_notify_event',
                                        self._handle_move)
        self._figure.canvas.mpl_connect('button_release_event',
                                        self._handle_release)
        self._figure.canvas.mpl_connect('resize_event', self._handle_resize)
        self.activateTool(ToolType.span, self.isActiveDefault(ToolType.span))
        self._pan_event = None
        self._pending_draw = None
        self._pending_artists_draw = None
        self._other_draw_events = []
        self._draw_timer = QTimer(self)
        self._draw_timer.timeout.connect(self._do_draw_events)
        self._draw_timer.start(20)
        self._zoom_skew = None

        self._menu = QMenu(self)
        self._copy_image_action = QAction(self.tr('Copy To Clipboard'), self)
        self._copy_image_action.triggered.connect(self.copyToClipboard)
        self._copy_image_action.setShortcuts(QKeySequence.Copy)
        self._save_image_action = QAction(self.tr('Save As Image'), self)
        self._save_image_action.triggered.connect(self.saveAsImage)
        self._show_table_action = QAction(self.tr('Show Table'), self)
        self._show_table_action.triggered.connect(self.showTable)
        self._menu.addAction(self._copy_image_action)
        self._menu.addAction(self._save_image_action)
        self._menu.addAction(self._show_table_action)
        self.addAction(self._copy_image_action)

        self._table_view = None
        self._single_axis_zoom_enabled = True
        self._cached_label_width_height = None

        if hasattr(type(self), 'dataChanged'):
            self.dataChanged.connect(self._on_data_changed)

        self._options_view = None
        self._secondary_axes = self._secondary_y_extent = self._secondary_x_extent = None
        self._legend = None
        self._draggable_legend = None
        self._setting_axis_limits = False

        self.hasHiddenSeries = False

    enabledToolsChanged = pyqtSignal()
    spanChanged = pyqtSignal(SpanModel)
    hasHiddenSeriesChanged = pyqtSignal(bool)

    span = AutoProperty(SpanModel)
    hasHiddenSeries = AutoProperty(bool)

    def setOptionsView(self, options_view):
        self._options_view = options_view
        self._options_view.setSecondaryYLimitsEnabled(
            self._secondary_y_enabled())
        self._options_view.setSecondaryXLimitsEnabled(
            self._secondary_x_enabled())

        self._options_view.showGridLinesChanged.connect(
            self._update_grid_lines)
        self._options_view.xAxisLowerLimitChanged.connect(
            self._handle_options_view_limit_changed(x_min_changed=True))
        self._options_view.xAxisUpperLimitChanged.connect(
            self._handle_options_view_limit_changed(x_max_changed=True))
        self._options_view.yAxisLowerLimitChanged.connect(
            self._handle_options_view_limit_changed(y_min_changed=True))
        self._options_view.yAxisUpperLimitChanged.connect(
            self._handle_options_view_limit_changed(y_max_changed=True))
        self._options_view.xAxisLimitsChanged.connect(
            self._handle_options_view_limit_changed(x_min_changed=True,
                                                    x_max_changed=True))
        self._options_view.yAxisLimitsChanged.connect(
            self._handle_options_view_limit_changed(y_min_changed=True,
                                                    y_max_changed=True))

        self._options_view.secondaryXAxisLowerLimitChanged.connect(
            self._handle_options_view_secondary_limit_changed(
                x_min_changed=True))
        self._options_view.secondaryXAxisUpperLimitChanged.connect(
            self._handle_options_view_secondary_limit_changed(
                x_max_changed=True))
        self._options_view.secondaryYAxisLowerLimitChanged.connect(
            self._handle_options_view_secondary_limit_changed(
                y_min_changed=True))
        self._options_view.secondaryYAxisUpperLimitChanged.connect(
            self._handle_options_view_secondary_limit_changed(
                y_max_changed=True))
        self._options_view.secondaryXAxisLimitsChanged.connect(
            self._handle_options_view_secondary_limit_changed(
                x_min_changed=True, x_max_changed=True))
        self._options_view.secondaryYAxisLimitsChanged.connect(
            self._handle_options_view_secondary_limit_changed(
                y_min_changed=True, y_max_changed=True))

    def setLegendControl(self, legend_control):
        self._legend_control = legend_control
        self._legend_control.seriesUpdated.connect(self._legend_series_updated)
        self._legend_control.showLegendChanged.connect(self._show_legend)
        self._legend_control.seriesNameChanged.connect(
            self._handle_series_name_changed)
        self._legend_control.showSeriesChanged.connect(
            self._handle_show_series_changed)
        bind(self._legend_control, self, 'hasHiddenSeries', two_way=False)

    def _legend_series_updated(self):
        if self._legend is not None:
            self._show_legend(self._legend_control.showLegend)

    def _show_legend(self, show):
        if self._legend and not show:
            self._legend.remove()
            self._legend = None
            self.draw()
        elif show:
            if self._legend:
                self._legend.remove()
            show_series = self._legend_control.showSeries
            handles = [
                h for h, s in zip(self._legend_control.seriesHandles,
                                  show_series) if s
            ]
            names = [
                n
                for n, s in zip(self._legend_control.seriesNames, show_series)
                if s
            ]
            axes = (self._secondary_axes if self._secondary_axes
                    and self._secondary_axes.get_visible()
                    and self._secondary_axes.get_zorder() >
                    self._axes.get_zorder() else self._axes)
            self._legend = self._create_legend(
                axes,
                handles,
                names,
                markerscale=self._get_legend_markerscale())
            if self._get_legend_text_color() is not None:
                for text in self._legend.texts:
                    text.set_color(self._get_legend_text_color())
            self._draggable_legend = DraggableLegend(self._legend)
            self.draw()

    def _get_legend_markerscale(self):
        return 5

    def _create_legend(self, axes, handles, names, **kwargs):
        return axes.legend(handles, names, **kwargs)

    def _get_legend_text_color(self):
        return None

    def _handle_series_name_changed(self, index, series_name):
        if self._legend is not None and index < len(
                self._legend_control.seriesHandles):
            visible_handles = [
                h for h, s in zip(self._legend_control.seriesHandles,
                                  self._legend_control.showSeries)
                if s and h is not None
            ]
            try:
                legend_index = visible_handles.index(
                    self._legend_control.seriesHandles[index])
            except ValueError:
                return
            if legend_index < len(self._legend.texts):
                self._legend.texts[legend_index].set_text(series_name)
                self.draw()

    def _handle_show_series_changed(self, index, show_series):
        if index < len(self._legend_control.seriesHandles):
            self._set_series_visibility(
                self._legend_control.seriesHandles[index], show_series)
        if self._legend is not None:
            self._show_legend(self._legend_control.showLegend)
        else:
            self.draw()

    def _set_series_visibility(self, handle, visible):
        if not handle:
            return
        if hasattr(handle, 'set_visible'):
            handle.set_visible(visible)
        elif hasattr(handle, 'get_children'):
            for child in handle.get_children():
                self._set_series_visibility(child, visible)

    def _update_grid_lines(self):
        show_grid_lines = False if self._options_view is None else self._options_view.showGridLines
        gridline_color = self._axes.spines['bottom'].get_edgecolor()
        gridline_color = gridline_color[0], gridline_color[1], gridline_color[
            2], 0.5
        kwargs = dict(color=gridline_color,
                      alpha=0.5) if show_grid_lines else {}
        self._axes.grid(show_grid_lines, **kwargs)
        self.draw()

    def _handle_options_view_limit_changed(self,
                                           x_min_changed=False,
                                           x_max_changed=False,
                                           y_min_changed=False,
                                           y_max_changed=False):
        def _():
            if self._options_view is None or self._setting_axis_limits:
                return
            (x_min, x_max), (y_min, y_max) = (new_x_min, new_x_max), (
                new_y_min, new_y_max) = self._get_xy_extents()
            (x_opt_min,
             x_opt_max), (y_opt_min,
                          y_opt_max) = self._get_options_view_xy_extents()
            if x_min_changed:
                new_x_min = x_opt_min
            if x_max_changed:
                new_x_max = x_opt_max
            if y_min_changed:
                new_y_min = y_opt_min
            if y_max_changed:
                new_y_max = y_opt_max
            if [new_x_min, new_x_max, new_y_min, new_y_max
                ] != [x_min, x_max, y_min, y_max]:
                self._xy_extents = (new_x_min, new_x_max), (new_y_min,
                                                            new_y_max)
                self._set_axes_limits()
                self.draw()

        return _

    def _get_options_view_xy_extents(self):
        (x_data_min, x_data_max), (y_data_min,
                                   y_data_max) = self._get_data_xy_extents()
        x_min = x_data_min if np.isnan(
            self._options_view.xAxisLowerLimit
        ) else self._options_view.xAxisLowerLimit
        x_max = x_data_max if np.isnan(
            self._options_view.xAxisUpperLimit
        ) else self._options_view.xAxisUpperLimit
        y_min = y_data_min if np.isnan(
            self._options_view.yAxisLowerLimit
        ) else self._options_view.yAxisLowerLimit
        y_max = y_data_max if np.isnan(
            self._options_view.yAxisUpperLimit
        ) else self._options_view.yAxisUpperLimit
        return (x_min, x_max), (y_min, y_max)

    def _handle_options_view_secondary_limit_changed(self,
                                                     x_min_changed=False,
                                                     x_max_changed=False,
                                                     y_min_changed=False,
                                                     y_max_changed=False):
        def _():
            if self._options_view is None or self._setting_axis_limits:
                return
            updated = False
            (x_opt_min, x_opt_max), (
                y_opt_min,
                y_opt_max) = self._get_options_view_secondary_xy_extents()
            if self._has_secondary_y_extent() and (y_min_changed
                                                   or y_max_changed):
                y_min, y_max = new_y_min, new_y_max = self._get_secondary_y_extent(
                )
                if y_min_changed:
                    new_y_min = y_opt_min
                if y_max_changed:
                    new_y_max = y_opt_max
                if [new_y_min, new_y_max] != [y_min, y_max]:
                    self._secondary_y_extent = (new_y_min, new_y_max)
                    updated = True
            if self._has_secondary_x_extent() and (x_min_changed
                                                   or x_max_changed):
                x_min, x_max = new_x_min, new_x_max = self._get_secondary_x_extent(
                )
                if x_min_changed:
                    new_x_min = x_opt_min
                if x_max_changed:
                    new_x_max = x_opt_max
                if [new_x_min, new_x_max] != [x_min, x_max]:
                    self._secondary_x_extent = (new_x_min, new_x_max)
                    updated = True
            if updated:
                self._set_axes_limits()
                self.draw()

        return _

    def _get_options_view_secondary_xy_extents(self):
        x_data_min, x_data_max = self._get_data_secondary_x_extent()
        y_data_min, y_data_max = self._get_data_secondary_y_extent()
        x_min = x_data_min if np.isnan(
            self._options_view.secondaryXAxisLowerLimit
        ) else self._options_view.secondaryXAxisLowerLimit
        x_max = x_data_max if np.isnan(
            self._options_view.secondaryXAxisUpperLimit
        ) else self._options_view.secondaryXAxisUpperLimit
        y_min = y_data_min if np.isnan(
            self._options_view.secondaryYAxisLowerLimit
        ) else self._options_view.secondaryYAxisLowerLimit
        y_max = y_data_max if np.isnan(
            self._options_view.secondaryYAxisUpperLimit
        ) else self._options_view.secondaryYAxisUpperLimit
        return (x_min, x_max), (y_min, y_max)

    def _on_data_changed(self):
        self._cached_label_width_height = None

    def closeEvent(self, event):
        QWidget.closeEvent(self, event)
        if event.isAccepted():
            self._zoom_selector.onselect = self._span.onselect = self._span._select_none_handler = None

    def set_divider_h_margin(self, h_margin):
        h = [
            Size.Fixed(h_margin[0]),
            Size.Scaled(1.0),
            Size.Fixed(h_margin[1])
        ]
        self._divider.set_horizontal(h)

    def set_divider_v_margin(self, v_margin):
        v = [
            Size.Fixed(v_margin[0]),
            Size.Scaled(1.0),
            Size.Fixed(v_margin[1])
        ]
        self._divider.set_vertical(v)

    @property
    def x_extent_padding(self):
        return self._x_extent_padding

    @x_extent_padding.setter
    def x_extent_padding(self, value):
        self._x_extent_padding = value

    @property
    def y_extent_padding(self):
        return self._y_extent_padding

    @y_extent_padding.setter
    def y_extent_padding(self, value):
        self._y_extent_padding = value

    def _in_interval(self, value, interval):
        return interval[0] <= value <= interval[1]

    def _interval_skew(self, value, interval):
        return (value - interval[0]) / (interval[1] - interval[0])

    def _in_x_scroll_zone(self, event):
        return self._in_interval(event.x, self._axes.bbox.intervalx
                                 ) and event.y <= self._axes.bbox.intervaly[1]

    def _in_y_scroll_zone(self, event):
        return self._in_interval(event.y, self._axes.bbox.intervaly
                                 ) and event.x <= self._axes.bbox.intervalx[1]

    def _on_scroll(self, event):
        if self._secondary_axes is not None:
            self._handle_scroll_secondary(event)
        in_x = self._in_x_scroll_zone(event)
        in_y = self._in_y_scroll_zone(event)
        if in_x or in_y and event.button in ['up', 'down']:
            (x_min, x_max), (y_min, y_max) = self._get_actual_xy_extents()
            if (in_x and self._single_axis_zoom_enabled) or (in_x and in_y):
                skew = self._zoom_skew and self._zoom_skew[0]
                skew = self._interval_skew(
                    event.x,
                    self._axes.bbox.intervalx) if skew is None else skew
                x_min, x_max = self._zoom(x_min, x_max, skew, event.button)
            if (in_y and self._single_axis_zoom_enabled) or (in_x and in_y):
                skew = self._zoom_skew and self._zoom_skew[1]
                skew = self._interval_skew(
                    event.y,
                    self._axes.bbox.intervaly) if skew is None else skew
                y_min, y_max = self._zoom(y_min, y_max, skew, event.button)
            self._xy_extents = (x_min, x_max), (y_min, y_max)
        self._set_axes_limits()
        self.draw()

    def _in_secondary_y_scroll_zone(self, event):
        return self._in_interval(event.y, self._axes.bbox.intervaly) and \
                event.x >= self._axes.bbox.intervalx[1]

    def _in_secondary_x_scroll_zone(self, event):
        return self._in_interval(event.x, self._axes.bbox.intervalx) and \
                event.y >= self._axes.bbox.intervaly[1]

    def _handle_scroll_secondary(self, event):
        if self._has_secondary_y_extent():
            in_secondary_y = self._in_secondary_y_scroll_zone(event)
            if in_secondary_y and event.button in ['up', 'down']:
                self._secondary_y_extent = self._zoom(
                    *self._get_secondary_y_extent(),
                    self._interval_skew(event.y, self._axes.bbox.intervaly),
                    event.button)
        if self._has_secondary_x_extent():
            in_secondary_x = self._in_secondary_x_scroll_zone(event)
            if in_secondary_x and event.button in ['up', 'down']:
                self._secondary_x_extent = self._zoom(
                    *self._get_secondary_x_extent(),
                    self._interval_skew(event.x, self._axes.bbox.intervalx),
                    event.button)

    def _get_zoom_multiplier(self):
        return 20 / 19

    def _zoom(self, min_, max_, skew, direction):
        zoom_multiplier = self._get_zoom_multiplier(
        ) if direction == 'up' else 1 / self._get_zoom_multiplier()
        range_ = max_ - min_
        diff = (range_ * (1 / zoom_multiplier)) - range_
        max_ += diff * (1 - skew)
        min_ -= diff * skew
        return min_, max_

    def _set_axes_limits(self):
        try:
            self._setting_axis_limits = True
            if self._secondary_axes is not None:
                self._set_secondary_axes_limits()
            self._update_ticks()
            (x_min, x_max), (y_min, y_max) = self._get_xy_extents()
            if self._options_view is not None:
                if self._options_view.x_limits:
                    self._options_view.setXLimits(float(x_min), float(x_max))
                if self._options_view.y_limits:
                    self._options_view.setYLimits(float(y_min), float(y_max))
            self._axes.set_xlim(*_safe_limits(x_min, x_max))
            self._axes.set_ylim(*_safe_limits(y_min, y_max))
        finally:
            self._setting_axis_limits = False

    def _set_secondary_axes_limits(self):
        if self._options_view is not None:
            if self._options_view.secondary_y_limits:
                enabled = self._secondary_y_enabled()
                secondary_y_min, secondary_y_max = self._get_secondary_y_extent(
                ) if enabled else (float('nan'), float('nan'))
                self._options_view.setSecondaryYLimitsEnabled(enabled)
                self._options_view.setSecondaryYLimits(float(secondary_y_min),
                                                       float(secondary_y_max))
            if self._options_view.secondary_x_limits:
                enabled = self._secondary_x_enabled()
                secondary_x_min, secondary_x_max = self._get_secondary_x_extent(
                ) if enabled else (float('nan'), float('nan'))
                self._options_view.setSecondaryXLimitsEnabled(enabled)
                self._options_view.setSecondaryXLimits(float(secondary_x_min),
                                                       float(secondary_x_max))
        if self._has_secondary_y_extent():
            self._secondary_axes.set_ylim(*_safe_limits(
                *self._get_secondary_y_extent()))
        if self._has_secondary_x_extent():
            self._secondary_axes.set_xlim(*_safe_limits(
                *self._get_secondary_x_extent()))

    def _secondary_y_enabled(self):
        return True if self._secondary_axes and self._secondary_axes.get_visible(
        ) and self._has_secondary_y_extent() else False

    def _secondary_x_enabled(self):
        return True if self._secondary_axes and self._secondary_axes.get_visible(
        ) and self._has_secondary_x_extent() else False

    def _set_axes_labels(self):
        self._axes.set_xlabel(self.data.xAxisTitle)
        self._axes.set_ylabel(self.data.yAxisTitle)

    def _set_center(self, center):
        if not all(c is not None for c in center):
            center = (0, 0)
        x_extent, y_extent = self._get_xy_extents()
        span = x_extent[1] - x_extent[0], y_extent[1] - y_extent[0]
        x_extent = center[0] - span[0] / 2, center[0] + span[0] / 2
        y_extent = center[1] - span[1] / 2, center[1] + span[1] / 2
        self._xy_extents = x_extent, y_extent

    def _get_xy_extents(self):
        if self.data is None:
            return (0, 0), (0, 0)
        if self._xy_extents is None:
            return self._get_data_xy_extents()
        return self._xy_extents

    def _get_data_xy_extents(self):
        if self.data is None:
            return (0, 0), (0, 0)
        (x_min, x_max), (y_min, y_max) = self.data.get_xy_extents()
        return self._pad_extent(x_min, x_max,
                                self.x_extent_padding), self._pad_extent(
                                    y_min, y_max, self.y_extent_padding)

    def _has_secondary_y_extent(self):
        return hasattr(self.data, 'get_secondary_y_extent')

    def _get_secondary_y_extent(self):
        if self._secondary_y_extent is not None:
            return self._secondary_y_extent
        if self.data is not None:
            return self._get_data_secondary_y_extent()
        return (0, 0)

    def _get_data_secondary_y_extent(self):
        if self.data is None:
            return (0, 0)
        return self._pad_extent(*self.data.get_secondary_y_extent(),
                                self.y_extent_padding)

    def _has_secondary_x_extent(self):
        return hasattr(self.data, 'get_secondary_x_extent')

    def _get_secondary_x_extent(self):
        if self._secondary_x_extent is not None:
            return self._secondary_x_extent
        if self.data is not None:
            return self._get_data_secondary_x_extent()
        return (0, 0)

    def _get_data_secondary_x_extent(self):
        if self.data is None or not hasattr(self.data,
                                            'get_secondary_x_extent'):
            return (0, 0)
        return self._pad_extent(*self.data.get_secondary_x_extent(),
                                self.x_extent_padding)

    def _get_actual_xy_extents(self):
        return self._axes.get_xlim(), self._axes.get_ylim()

    def _pad_extent(self, min_, max_, padding):
        min_, max_ = self._zero_if_nan(min_), self._zero_if_nan(max_)
        range_ = max_ - min_
        return min_ - padding * range_, max_ + padding * range_

    def _zoom_selected(self, start_pos, end_pos):
        x_min, x_max = min(start_pos.xdata,
                           end_pos.xdata), max(start_pos.xdata, end_pos.xdata)
        y_min, y_max = min(start_pos.ydata,
                           end_pos.ydata), max(start_pos.ydata, end_pos.ydata)
        self._xy_extents = (x_min, x_max), (y_min, y_max)
        self._set_axes_limits()
        self.draw()

    def _handle_span_select(self, x_min, x_max):
        x_min, x_max = self._round_to_bin_width(x_min, x_max)
        self._update_span_rect(x_min, x_max)
        self.span = SpanModel(self, x_min, x_max)
        self.draw()

    def _handle_span_select_none(self):
        self.span = None

    def _handle_press(self, event):
        if event.button == 1:
            if self._is_panning:
                self._pan_event = event
            elif self._span.active:
                self._handle_span_press(event)

    def _handle_move(self, event):
        if event.xdata and self._pan_event:
            self._handle_pan_move(event)
        elif event.xdata and any(self._span_events()):
            self._handle_span_move(event)

    def _handle_release(self, event):
        if self._pan_event:
            self._pan_event = None
        elif any(self._span_events()):
            self._handle_span_release(event)

    def _handle_pan_move(self, event):
        from_x, from_y = self._axes.transData.inverted().transform(
            (self._pan_event.x, self._pan_event.y))
        to_x, to_y = self._axes.transData.inverted().transform(
            (event.x, event.y))
        self._pan(from_x - to_x, from_y - to_y)
        self._pan_event = event

    def _pan(self, delta_x, delta_y):
        (x_min, x_max), (y_min, y_max) = self._get_xy_extents()
        self._xy_extents = (x_min + delta_x,
                            x_max + delta_x), (y_min + delta_y,
                                               y_max + delta_y)
        self._set_axes_limits()
        self.draw()

    def _span_events(self):
        return self._span_center_mouse_event, self._span_left_mouse_event, self._span_right_mouse_event

    def _handle_span_press(self, event):
        if not event.xdata:
            return
        span_min, span_max = (self.span.left,
                              self.span.right) if self.span else (0, 0)
        edge_tolerance = self._span_tolerance()
        if abs(span_min - event.xdata) < edge_tolerance:
            self._span.active = False
            self._span_left_mouse_event = event
        elif abs(span_max - event.xdata) < edge_tolerance:
            self._span.active = False
            self._span_right_mouse_event = event
        elif span_min < event.xdata < span_max:
            self._span.active = False
            self._span_center_mouse_event = event

    def _handle_span_move(self, event):
        if not self.span:
            return
        x_min, x_max = self.span.left, self.span.right
        last_event = next(x for x in self._span_events() if x)
        diff_x = event.xdata - last_event.xdata
        if self._span_center_mouse_event is not None:
            self._update_span_rect(x_min + diff_x)
        elif self._span_left_mouse_event is not None:
            self._update_span_rect(x_min + diff_x, x_max)
        elif self._span_right_mouse_event is not None:
            self._update_span_rect(x_min, x_max + diff_x)
        self.draw([self._span.rect])

    def _handle_span_release(self, _event):
        x_min = self._span.rect.get_x()
        x_max = x_min + self._span.rect.get_width()
        x_min, x_max = self._round_to_bin_width(x_min, x_max)
        self._update_span_rect(x_min, x_max)
        self.span = SpanModel(self, x_min, x_max)
        self.draw()
        self._span.active = True
        self._span_center_mouse_event = self._span_left_mouse_event = self._span_right_mouse_event = None

    def _update_span_rect(self, x_min, x_max=None):
        self._span.rect.set_x(x_min)
        self._span.stay_rect.set_x(x_min)
        if x_max:
            self._span.rect.set_width(x_max - x_min)
            self._span.stay_rect.set_width(x_max - x_min)

    def _round_to_bin_width(self, x_min, x_max):
        return x_min, x_max

    def _span_tolerance(self):
        return 5

    def toolEnabled(self, _tool_type):
        return False

    def toolAvailable(self, _tool_type):
        return False

    def activateTool(self, tool_type, active):
        if tool_type == ToolType.zoom:
            self._zoom_selector.set_active(active)
        elif tool_type == ToolType.span:
            if self._span.active and not active:
                self._previous_span = self.span
                self.span = None
                for r in [self._span.rect, self._span.stay_rect]:
                    self._remove_artist(r)
            elif not self._span.active and active:
                self.span = self._previous_span
                for r in [self._span.rect, self._span.stay_rect]:
                    self._add_artist(r)
            self._span.active = active
            self.draw()
        elif tool_type == ToolType.pan:
            self._is_panning = active
        self._active_tools[tool_type] = active

    def toolActive(self, tool_type):
        return self._active_tools.get(tool_type, False)

    def isActiveDefault(self, _tool_type):
        return False

    def _add_artist(self, artist):
        self._axes.add_artist(artist)
        self._decoration_artists.append(artist)

    def _remove_artist(self, artist):
        artist.remove()
        if artist in self._decoration_artists:
            self._decoration_artists.remove(artist)

    def _handle_resize(self, _event):
        self._update_ticks()
        return self.draw()

    def draw(self, artists=None):
        if artists is None:

            def _update():
                for a in self._decoration_artists:
                    a.remove()
                self._canvas.draw()
                self._background_cache = self._canvas.copy_from_bbox(
                    self._figure.bbox)
                for a in self._decoration_artists:
                    self._axes.add_artist(a)
                    self._axes.draw_artist(a)
                self._canvas.update()

            self._pending_draw = _update
        else:

            def _update():
                if self._background_cache is None:
                    raise RuntimeError('Must run draw before drawing artists!')
                self._canvas.restore_region(self._background_cache)
                for a in artists:
                    self._axes.draw_artist(a)
                self._canvas.update()

            self._pending_artists_draw = _update

    def _do_draw_events(self):
        if self._pending_draw is not None:
            self._pending_draw()
            self._pending_draw = None
        if self._pending_artists_draw is not None:
            self._pending_artists_draw()
            self._pending_artists_draw = None
        if self._other_draw_events:
            for draw_event in self._other_draw_events:
                draw_event()
            self._other_draw_events = []

    def addDrawEvent(self, draw_event):
        self._other_draw_events.append(draw_event)

    def resetZoom(self):
        self._secondary_y_extent = self._secondary_x_extent = None
        self._xy_extents = None
        self._set_axes_limits()
        self.draw()

    def _twinx(self, ylabel):
        axes = self._axes.twinx()
        for spine in ['top', 'left']:
            axes.spines[spine].set_visible(False)
        axes.set_ylabel(ylabel)
        axes.set_zorder(1)
        return axes

    @property
    def axes(self):
        return self._axes

    @property
    def secondary_axes(self):
        if self._secondary_axes is None:
            self._set_secondary_axes(self._twinx(''))
        return self._secondary_axes

    def _set_secondary_axes(self, axes):
        self._secondary_axes = axes

    @staticmethod
    def sizeHint():
        """function::sizeHint()
        Override the default sizeHint to ensure the plot has an initial size
        """
        return QSize(600, 400)

    def minimumSizeHint(self):
        """function::sizeHint()
        Override the default sizeHint to ensure the plot does not shrink below minimum size
        """
        return self.sizeHint()

    @staticmethod
    def _zero_if_nan(value):
        return value if not isinstance(value,
                                       float) or not np.isnan(value) else 0

    def canShowTable(self):
        return hasattr(self, 'data') and self.data is not None and hasattr(
            self.data, 'table')

    def contextMenuEvent(self, event):
        self._show_table_action.setEnabled(self.canShowTable())
        self._menu.exec_(event.globalPos())

    def copyToClipboard(self):
        with BytesIO() as buffer:
            self._figure.savefig(buffer,
                                 facecolor=self._figure.get_facecolor())
            QApplication.clipboard().setImage(
                QImage.fromData(buffer.getvalue()))

    def saveAsImage(self):
        filename = self._file_dialog_service.get_save_filename(
            self, self.tr('Portable Network Graphics (*.png)'))
        if filename:
            self._figure.savefig(filename,
                                 facecolor=self._figure.get_facecolor())

    def showTable(self):
        if self.canShowTable():
            self._table_view = TableView(None)
            self._table_view.pasteEnabled = False
            self._table_view.setModel(self.data.table)
            self._table_view.setMinimumSize(800, 600)
            self._table_view.show()

    def _update_ticks(self):
        if not self.data:
            return
        if hasattr(self.data, 'x_labels'):
            step = self.data.x_tick_interval if hasattr(
                self.data, 'x_tick_interval') else None
            x_ticks, x_labels = self._get_labels(self.data.x_labels,
                                                 step,
                                                 horizontal=True)
            self._axes.set_xticks(x_ticks)
            self._axes.set_xticklabels(x_labels)
        if hasattr(self.data, 'y_labels'):
            step = self.data.y_tick_interval if hasattr(
                self.data, 'y_tick_interval') else None
            y_ticks, y_labels = self._get_labels(self.data.y_labels,
                                                 step,
                                                 horizontal=False)
            self._axes.set_yticks(y_ticks)
            self._axes.set_yticklabels(y_labels)

    def _get_labels(self, labels, step, horizontal=True):
        (x0, x1), (y0, y1) = self._get_xy_extents()
        start, end = (int(x0), int(x1)) if horizontal else (int(y0), int(y1))
        visible_points = end - start
        if not (step and step > 0):
            width, height = self._get_label_width_height(labels)
            axes_bbox = self._axes.get_window_extent(
                self._figure.canvas.get_renderer()).transformed(
                    self._figure.dpi_scale_trans.inverted())
            plot_size = (axes_bbox.width if horizontal else
                         axes_bbox.height) * self._figure.dpi
            size = (width if horizontal else height)
            if plot_size == 0 or size == 0:
                n_labels = 16
            else:
                n_labels = int(plot_size / size)
                if n_labels == 0:
                    n_labels = 16
            step = int(visible_points / n_labels) + 1
        else:
            step = int(step)
        indexes = list(range(len(labels)))
        display_labels = list(labels)
        for i in indexes:
            if i % step:
                display_labels[i] = ''
        return indexes, display_labels

    def _get_label_width_height(self, labels):
        if not self._cached_label_width_height:
            font = MatPlotLibFont.default()
            width = 0
            height = 0
            for label in labels:
                next_width, next_height = font.get_size(
                    str(label), matplotlib.rcParams['font.size'],
                    self._figure.dpi)
                width = max(width, next_width)
                height = max(height, next_height)
            self._cached_label_width_height = width, height
        return self._cached_label_width_height

    def _create_new_axes(self, nx=1, ny=1) -> LocatableAxes:
        axes = LocatableAxes(self._figure, self._divider.get_position())
        axes.set_axes_locator(self._divider.new_locator(nx=nx, ny=ny))
        self._figure.add_axes(axes)
        return axes

    @staticmethod
    def _create_secondary_xy_axes(figure,
                                  divider,
                                  nx=1,
                                  ny=1,
                                  visible=False,
                                  z_order=1):
        axes = LocatableAxes(figure, divider.get_position())
        axes.set_axes_locator(divider.new_locator(nx=nx, ny=ny))
        axes.xaxis.tick_top()
        axes.xaxis.set_label_position('top')
        axes.yaxis.tick_right()
        axes.yaxis.set_label_position('right')
        axes.patch.set_visible(visible)
        axes.set_zorder(z_order)
        figure.add_axes(axes)
        axes.ticklabel_format(style='sci', axis='x', scilimits=(-4, 4))
        axes.ticklabel_format(style='sci', axis='y', scilimits=(-4, 4))
        return axes

    @staticmethod
    def _create_shared_axes(figure,
                            divider,
                            shared_axes,
                            nx=1,
                            ny=1,
                            visible=False,
                            z_order=1):
        axes = LocatableAxes(figure,
                             divider.get_position(),
                             sharex=shared_axes,
                             sharey=shared_axes,
                             frameon=False)
        axes.set_axes_locator(divider.new_locator(nx=nx, ny=ny))
        for spine in axes.spines.values():
            spine.set_visible(False)
        for axis in axes.axis.values():
            axis.set_visible(False)
        axes.patch.set_visible(False)
        axes.set_visible(False)
        axes.set_zorder(z_order)
        figure.add_axes(axes)
        return axes
Esempio n. 11
0
def plot_variance_multi(savefile,
                        data,
                        labels,
                        colors,
                        ylabel,
                        ylim,
                        ylim_unit=1,
                        ylim_scale=5,
                        colors2=None,
                        hline=None,
                        vline=None,
                        locator=-1,
                        draw_dist=True,
                        subsample=1):
    plt.clf()
    plt.rcParams["font.size"] = 14
    colors2 = colors if colors2 is None else colors2
    m = len(data)
    #fig, ax = plt.subplots(1, 1)

    fig = plt.figure(1, figsize=(4, 4))

    # The first items are for padding and the second items are for the axes.
    # sizes are in inch.
    h = [Size.Fixed(0.65), Size.Fixed(5.5)]
    v = [Size.Fixed(0.7), Size.Fixed(4.)]

    divider = Divider(fig, (0.0, 0.0, 1., 1.), h, v, aspect=False)
    # the width and height of the rectangle is ignored.

    ax = LocatableAxes(fig, divider.get_position())
    ax.set_axes_locator(divider.new_locator(nx=1, ny=1))

    fig.add_axes(ax)

    if not hasattr(draw_dist, '__getitem__'):
        v = draw_dist
        draw_dist = [v for i in range(m)]
    print(draw_dist)

    for k in range(m)[::-1]:
        plot_m = numpy.median(data[k], 0)
        sorted = numpy.sort(data[k], 0)
        n = data[k].shape[0]
        T = data[k].shape[1]
        t = numpy.arange(0, T)
        fin = plot_m[-1]
        best = sorted[0][-1]
        alpha = 1.0 / (n // 2) * 0.4
        if subsample > 1:
            t = subsample_data(t, subsample)
            plot_m = subsample_data(plot_m, subsample)
            sorted = subsample_data(sorted, subsample)

        if k == 0:
            if ylim is None:
                ymax = min([fin * ylim_scale, sorted[-1, 0], 90])
                ymin = numpy.floor(numpy.max(best / ylim_unit - 0.5,
                                             0)) * ylim_unit
                ymin = 0
                ylim = [ymin, numpy.ceil(ymax / ylim_unit) * ylim_unit]
            else:
                ylim = ylim

        # 3: 0
        if draw_dist[k]:
            print('k', k)
            for i in range(n // 2):
                ax.fill_between(t,
                                sorted[-1 - i],
                                sorted[i],
                                facecolor=colors2[k],
                                alpha=alpha)

    for k in range(m)[::-1]:
        plot_m = numpy.median(data[k], 0)
        t = numpy.arange(0, T)
        if subsample > 1:
            t = subsample_data(t, subsample)
            plot_m = subsample_data(plot_m, subsample)

        ax.plot(t, plot_m, lw=1, color=colors[k], ls='-', label=labels[k])

    if hline is not None:
        ax.plot((0, T), (hline, hline), color='gray', ls=':')

    if vline is not None:
        ax.plot((vline, vline), (ylim[0], ylim[1]), color='gray', ls=':')

    ax.legend(loc='upper right')
    ax.set_xlabel('Iterations')
    ax.set_ylabel(ylabel)
    ax.set_xlim([0, T])
    ax.set_ylim(ylim)
    if locator >= 0:
        ax.yaxis.set_major_locator(MultipleLocator(locator))
    ax.grid()
    plt.savefig(savefile + '.png')
    plt.savefig(savefile + '.pdf')
Esempio n. 12
0
    def delay_avg_svg(self, ttype, b64encode=True):
        fig = pyplot.figure(figsize=self.FIGSIZE)

        h = [Size.Fixed(1.2), Size.Scaled(1.), Size.Fixed(.2)]
        v = [Size.Fixed(0.7), Size.Scaled(1.), Size.Fixed(.5)]

        divider = Divider(fig, (0.0, 0.0, 1., 1.), h, v, aspect=False)
        plt = Axes(fig, divider.get_position())
        plt.set_axes_locator(divider.new_locator(nx=1, ny=1))

        fig.add_axes(plt)

        result = self.result
        runinfo = result.runinfo

        # ----
        # The X limits are -rampupMins, runMins
        # ----
        plt.set_xlim(-int(runinfo['rampupMins']), int(runinfo['runMins']))
        plt.axvspan(-int(runinfo['rampupMins']), 0, facecolor='0.2', alpha=0.1)

        # ----
        # offset the timestamps by -rampupMins so that the graph
        # starts with negative minutes elapsed and switches to
        # positive when the measurement begins.
        # ----
        offset = (int(runinfo['rampupMins'])) * 60.0

        # ----
        # ttype transaction delay. First get the timestamp
        # and delay numbers from the result data.
        # The X vector then is the sorted unique timestamps rounded
        # to an interval.
        # ----
        interval = 10
        data = numpy.array([[(int(tup[0] / interval) * interval - offset) / 60,
                             tup[1], tup[5]]
                            for tup in result.result_ttype[ttype]])
        x = sorted(numpy.unique(data[:, 0]))

        # ----
        # The Y vector is the sums of transactions delay divided by
        # the sums of the count, grouped by X.
        # ----
        y = []
        for ts in x:
            tmp = data[numpy.where(data[:, 0] == ts)]
            y.append(numpy.sum(tmp[:, 2]) / (numpy.sum(tmp[:, 1]) + 0.000001))

        # ----
        # Plot the ttype delay and add all the decorations
        # ----
        plt.plot(x, y, 'r', label='Delay')

        # ----
        # Now do the same aggregation for the latency
        # ----
        data = numpy.array([[(int(tup[0] / interval) * interval - offset) / 60,
                             tup[1], tup[2]]
                            for tup in result.result_ttype[ttype]])

        # ----
        # The Y vector is similar by based on latency
        # ----
        y = []
        for ts in x:
            tmp = data[numpy.where(data[:, 0] == ts)]
            y.append(numpy.sum(tmp[:, 2]) / (numpy.sum(tmp[:, 1]) + 0.000001))
        plt.plot(x, y, 'b', label='Latency')

        plt.set_title("{} Average Latency and Delay".format(ttype))
        plt.set_xlabel("Elapsed Minutes")
        plt.set_ylabel("Latency/Delay in ms")
        plt.legend(loc='upper left')
        plt.grid()

        buf = io.StringIO()
        pyplot.savefig(buf, format='svg')

        if not b64encode:
            return buf.getvalue()
        return base64.b64encode(buf.getvalue().encode('utf-8')).decode('utf-8')
Esempio n. 13
0
def segtrends(x, segments=2, charts=True):
    """
    Turn minitrends to iterative process more easily adaptable to
    implementation in simple trading systems; allows backtesting functionality.
    :param x: One-dimensional data set
    :param window: How long the trendlines should be. If window < 1, then it
                   will be taken as a percentage of the size of the data
    :param charts: Boolean value saying whether to print chart to screen
    """

    import numpy as np
    y = np.array(x['Close'])
    #    for i in range(len(y),1200):
    #        y = np.append(y, y[len(y)-1])

    # Implement trendlines
    segments = int(segments)
    maxima = np.ones(segments)
    minima = np.ones(segments)
    segsize = int(len(y) / segments)
    for i in range(1, segments + 1):
        ind2 = i * segsize
        ind1 = ind2 - segsize
        maxima[i - 1] = max(y[ind1:ind2])
        minima[i - 1] = min(y[ind1:ind2])

    # Find the indexes of these maxima in the data
    x_maxima = np.ones(segments)
    x_minima = np.ones(segments)
    for i in range(0, segments):
        x_maxima[i] = np.where(y == maxima[i])[0][0]
        x_minima[i] = np.where(y == minima[i])[0][0]

    if charts:
        import matplotlib.pyplot as plt
        plt.rc('font', size=6)
        fig = plt.figure(figsize=(8, 6))
        h = [Size.Fixed(0.5), Size.Fixed(7.)]
        v = [Size.Fixed(0.7), Size.Fixed(5.)]
        divider = Divider(fig, (0.0, 0.0, 0., 0.), h, v, aspect=False)
        ax = Axes(fig, divider.get_position())
        ax.set_axes_locator(divider.new_locator(nx=1, ny=1))
        fig.add_axes(ax)
        plt.plot(y, linewidth=1)
        plt.grid(True)

    for i in range(0, segments - 1):
        maxslope = (maxima[i + 1] - maxima[i]) / (x_maxima[i + 1] -
                                                  x_maxima[i])
        a_max = maxima[i] - (maxslope * x_maxima[i])
        b_max = maxima[i] + (maxslope * (len(y) + 300 - x_maxima[i]))
        maxline = np.linspace(a_max, b_max, len(y) + 300)

        minslope = (minima[i + 1] - minima[i]) / (x_minima[i + 1] -
                                                  x_minima[i])
        a_min = minima[i] - (minslope * x_minima[i])
        b_min = minima[i] + (minslope * (len(y) + 300 - x_minima[i]))
        minline = np.linspace(a_min, b_min, len(y) + 300)

        if charts:
            plt.plot(maxline, 'g', linewidth=0.15)
            plt.plot(minline, 'r', linewidth=.15)

    if charts:
        #plt.show()
        plt.ylim(min(y[-120:] * .9), max(y[-120:] * 1.1))
        plt.rc('xtick', labelsize=6)
        plt.xticks(range(0, 1200, 4), x.index[range(0, 910, 4)], rotation=90)
        plt.rc('xtick', labelsize=6)
        plt.xlim(800, 1000)
        #        plt.xlim(datetime.datetime(2016,1,1),datetime.datetime(2022,1,1))
        plt.savefig('C:/git/TRADE/chart.png', dpi=750)
        plt.close()

    # OUTPUT
    return x_maxima, maxima, x_minima, minima
Esempio n. 14
0
    sumFinalAnalysisTE = np.matmul(-np.transpose(npTE), lstFinalAnalysis)
    A = np.array([[ndados, sumTE], [sumTE, prodTE]])
    B = np.array([[sumFinalAnalysis], [sumFinalAnalysisTE]])
    invA = np.linalg.inv(A)
    P = np.matmul(invA, B)
    T2[indexValue] = (P[1][0])

for i, t in enumerate(T2):
    T2[i] = math.inf if t[0] == 0 else 1000 / t[0]

T2Star = np.reshape(T2, (400, 400))
fig = plt.figure(figsize=(6, 6))
h = [Size.Fixed(1.0), Size.Fixed(5.)]
v = [Size.Fixed(1.0), Size.Fixed(5.)]
divider = Divider(fig, (0.0, 0.0, 1., 1.), h, v, aspect=False)
ax = Axes(fig, divider.get_position())
ax.set_axes_locator(divider.new_locator(nx=1, ny=1))
fig.add_axes(ax)
plt.pcolor(np.flip(T2Star, 0), cmap=jet_combined, vmin=0, vmax=180)
toc = time.perf_counter()
print(f"Executed in {toc - tic:0.4f} seconds")

# toggle_selector.RS = RectangleSelector(ax, line_select_callback,
#                                        drawtype='box', useblit=True,
#                                        button=[1, 3],  # don't use middle button
#                                        minspanx=5, minspany=5,
#                                        spancoords='pixels',
#                                        interactive=True)

# plt.connect('key_press_event', toggle_selector)
plt.show()
Esempio n. 15
0
    def tpmc_svg(self, b64encode=True):
        fig = pyplot.figure(figsize=self.FIGSIZE)

        h = [Size.Fixed(1.2), Size.Scaled(1.), Size.Fixed(.2)]
        v = [Size.Fixed(0.7), Size.Scaled(1.), Size.Fixed(.5)]

        divider = Divider(fig, (0.0, 0.0, 1., 1.), h, v, aspect=False)
        plt = Axes(fig, divider.get_position())
        plt.set_axes_locator(divider.new_locator(nx=1, ny=1))

        fig.add_axes(plt)

        result = self.result
        runinfo = result.runinfo

        # ----
        # The X limits are -rampupMins, runMins
        # ----
        plt.set_xlim(-int(runinfo['rampupMins']), int(runinfo['runMins']))
        plt.axvspan(-int(runinfo['rampupMins']), 0, facecolor='0.2', alpha=0.1)

        # ----
        # offset the timestamps by -rampupMins so that the graph
        # starts with negative minutes elapsed and switches to
        # positive when the measurement begins.
        # ----
        offset = (int(runinfo['rampupMins'])) * 60.0

        # ----
        # NEW_ORDER transactions per minute. First get the timestamp
        # and number of transactions from the result data.
        # The X vector then is the sorted unique timestamps rounded
        # to an interval.
        # ----
        interval = 10
        data = numpy.array([[(int(tup[0] / interval) * interval - offset) / 60,
                             tup[1] * (60 / interval)]
                            for tup in result.result_ttype['NEW_ORDER']])
        x = sorted(numpy.unique(data[:, 0]))

        # ----
        # The Y vector is the sums of transactions grouped by X
        # ----
        y = []
        for ts in x:
            tmp = data[numpy.where(data[:, 0] == ts)]
            y.append(numpy.sum(tmp[:, 1]))

        # ----
        # Plot the NOPM and add all the decorations
        # ----
        plt.plot(x, y, 'b')
        plt.set_title("NEW_ORDER Transactions per Minute (tpmC)")
        plt.set_xlabel("Elapsed Minutes")
        plt.set_ylabel("tpmC")
        plt.grid()

        buf = io.StringIO()
        pyplot.savefig(buf, format='svg')

        if not b64encode:
            return buf.getvalue()
        return base64.b64encode(buf.getvalue().encode('utf-8')).decode('utf-8')
Esempio n. 16
0
    def __init__(self, images, shape):
        fig = plt.figure(figsize=(10, 6))

        # subplot positions
        h_nav = [Size.Fixed(0.5), Size.Fixed(2.5)]
        v_nav = [Size.Fixed(0.5), Size.Scaled(1.0), Size.Fixed(0.5)]
        h_im = [Size.Fixed(0.5), Size.Scaled(1.0), Size.Fixed(0.5)]
        v_im = [Size.Fixed(0.5), Size.Scaled(1.0), Size.Fixed(0.5)]
        nav = Divider(fig, (0.0, 0.0, 0.2, 1.), h_nav, v_nav, aspect=False)
        image = Divider(fig, (0.2, 0.0, 0.8, 1.), h_im, v_im, aspect=True)
        image.set_anchor('C')

        # Toolbar menu box
        ax1 = LocatableAxes(fig, nav.get_position())
        ax1.set_axes_locator(nav.new_locator(nx=1, ny=1))
        ax1.get_xaxis().set_visible(False)
        ax1.get_yaxis().set_visible(False)
        fig.add_axes(ax1, label='toolbar')

        ax1.text(0.05, 0.45, "Filter", weight='heavy',
                 transform=ax1.transAxes)

        # Image space
        ax2 = LocatableAxes(fig, image.get_position())
        ax2.set_axes_locator(image.new_locator(nx=1, ny=1))
        fig.add_axes(ax2, label='image_space')

        self.callback = ImageIndex(images, shape, fig)

        # Navigation
        ## Go to
        ax_text_index = plt.axes([0.59, 0.05, 0.1, 0.075])
        ip = InsetPosition(ax1, [0.2, 0.84, 0.3, 0.05])
        ax_text_index.set_axes_locator(ip)
        entry_index = TextBox(ax_text_index, 'Go to', initial="0")
        entry_index.on_submit(self.callback.submit_index)
        ## Previous
        ax_prev = plt.axes([0.7, 0.05, 0.075, 0.075])
        ip = InsetPosition(ax1, [0.55, 0.84, 0.15, 0.05])
        ax_prev.set_axes_locator(ip)
        bprev = Button(ax_prev, '<<')
        bprev.on_clicked(self.callback.prev)
        ## Next
        ax_next = plt.axes([0.81, 0.05, 0.075, 0.075])
        ip = InsetPosition(ax1, [0.75, 0.84, 0.15, 0.05])
        ax_next.set_axes_locator(ip)
        bnext = Button(ax_next, '>>')
        bnext.on_clicked(self.callback.next)

        # Bounding Boxes
        ax_chec = plt.axes([0.1, 0.05, 0.35, 0.075])
        ip = InsetPosition(ax1, [0.05, 0.5, 0.9, 0.3])
        ax_chec.set_axes_locator(ip)
        ax_chec.text(0.05, 0.85, "Bounding Boxes", transform=ax_chec.transAxes)
        check = CheckButtons(ax_chec,
                             ('characters', 'lines'),
                             (False, False))
        check.on_clicked(self.callback.update_bboxes)

        # Filtering
        ## Image
        ax_text_image = plt.axes([0.1, 0.1, 0.1, 0.075])
        ip = InsetPosition(ax1, [0.26, 0.38, 0.64, 0.05])
        ax_text_image.set_axes_locator(ip)
        entry_image = TextBox(ax_text_image, 'images',
                              initial="image_id,image_id")
        entry_image.on_submit(self.callback.submit_images)
        ## Characters
        ax_text_char = plt.axes([0.1, 0.2, 0.1, 0.075])
        ip = InsetPosition(ax1, [0.21, 0.3, 0.69, 0.05])
        ax_text_char.set_axes_locator(ip)
        entry_char = TextBox(ax_text_char, 'chars',
                             initial="U+3055,U+3056")
        entry_char.on_submit(self.callback.submit_chars)
        ## Reset
        ax_reset = plt.axes([0., 0., 1., 1.])
        ip = InsetPosition(ax1, [0.05, 0.2, 0.2, 0.05])
        ax_reset.set_axes_locator(ip)
        breset = Button(ax_reset, 'Reset')
        breset.on_clicked(self.callback.reset)

        plt.show()
Esempio n. 17
0
    # rgba = colors.hsv_to_rgb(hsv)
    # rgba = np.dstack([rgba, alpha])
    # # else:
    # hsv[:, :, 2] = alpha.clip(min=0.2, max=value)
    # rgba_l = colors.hsv_to_rgb(hsv)
    # alpha_l = np.abs(1 - alpha).clip(min=value, max=1)
    # hsv[:, :, 2] = alpha_l
    # rgba_lr = colors.hsv_to_rgb(hsv)

    cmap = colors.ListedColormap(cmap, name='test1')

fig = plt.figure(1, figsize=(12, 8))
h = [Size.Fixed(0.), Size.Fixed(6.5)]
v = [Size.Fixed(0.5), Size.Fixed(3.25)]
win = Divider(fig, (0.1, 0.1, 0.8, 0.8), h, v, aspect=False)
ax = Axes(fig, win.get_position())
ax.set_axes_locator(win.new_locator(nx=1, ny=1))
fig.add_axes(ax)
# fig = plt.gcf()
for ii in range(1, 2):
    if ii == 0:
        to_plot = rgb
        title = 'Model'
    elif ii == 1:
        to_plot = rgba
        title = 'Model + Resolution (Transparency)'
    elif ii == 2:
        to_plot = rgba_l
        title = 'Model + Resolution (Lightness)'
    else:
        to_plot = rgba_lr
Esempio n. 18
0
    def cpu_svg(self,
                host=None,
                title="CPU Usage",
                ylabel="Percent",
                b64encode=True):
        fig = pyplot.figure(figsize=self.FIGSIZE)

        h = [Size.Fixed(1.2), Size.Scaled(1.), Size.Fixed(.2)]
        v = [Size.Fixed(0.7), Size.Scaled(1.), Size.Fixed(.5)]

        divider = Divider(fig, (0.0, 0.0, 1., 1.), h, v, aspect=False)
        plt = Axes(fig, divider.get_position())
        plt.set_axes_locator(divider.new_locator(nx=1, ny=1))

        fig.add_axes(plt)

        result = self.result
        runinfo = result.runinfo

        # ----
        # The X limits are -rampupMins, runMins, Y limits are 0..100
        # ----
        plt.set_xlim(-int(runinfo['rampupMins']), int(runinfo['runMins']))
        plt.set_ylim(0, 100)
        plt.axvspan(-int(runinfo['rampupMins']), 0, facecolor='0.2', alpha=0.1)

        # ----
        # Gather all the relevant data
        # ----
        x, y_user = self._get_metric_xy({
            'host': host,
            'metric': 'cpu.percent-user',
        })
        _, y_sys = self._get_metric_xy(
            {
                'host': host,
                'metric': 'cpu.percent-system',
            }, x)
        _, y_wait = self._get_metric_xy(
            {
                'host': host,
                'metric': 'cpu.percent-wait',
            }, x)
        _, y_intr = self._get_metric_xy(
            {
                'host': host,
                'metric': 'cpu.percent-interrupt',
            }, x)
        _, y_softirq = self._get_metric_xy(
            {
                'host': host,
                'metric': 'cpu.percent-softirq',
            }, x)
        _, y_idle = self._get_metric_xy(
            {
                'host': host,
                'metric': 'cpu.percent-idle',
            }, x)

        # ----
        # It is possible that the mqtt based metric collector produces
        # CSV files with different numbers of lines. We cut all of them
        # to a combined minimum length.
        # ----
        min_len = min(len(x), len(y_user), len(y_sys), len(y_wait),
                      len(y_intr), len(y_softirq), len(y_idle))
        x = x[:min_len]
        y_user = y_user[:min_len]
        y_sys = y_sys[:min_len]
        y_wait = y_wait[:min_len]
        y_intr = y_intr[:min_len]
        y_softirq = y_softirq[:min_len]
        y_idle = y_idle[:min_len]

        # ----
        # Plot the CPU usage
        # ----
        plt.stackplot(x,
                      y_user,
                      y_sys,
                      y_wait,
                      y_intr,
                      y_softirq,
                      y_idle,
                      colors=[
                          'g',
                          'b',
                          'r',
                          'c',
                          'm',
                          'y',
                      ],
                      labels=[
                          'User',
                          'System',
                          'Wait',
                          'Interrupt',
                          'SoftIrq',
                          'Idle',
                      ])

        # ----
        # Title and labels
        # ----
        plt.set_title(title)
        plt.set_xlabel("Elapsed Minutes")
        plt.set_ylabel(ylabel)
        plt.legend(loc='upper left')
        plt.grid()

        # ----
        # Now turn this into an in-memory SVG and return it as requested
        # (raw or b64-encoded)
        # ----
        buf = io.StringIO()
        pyplot.savefig(buf, format='svg')

        if not b64encode:
            return buf.getvalue()
        return base64.b64encode(buf.getvalue().encode('utf-8')).decode('utf-8')
Esempio n. 19
0
                level_4 = data[4]

                # Filters the level 4 data to CD and UC
                IBD_level_4 = level_4.loc[level_4['dx'].isin(["CD", "UC"])]
                IBD_level_4 = IBD_level_4.drop(columns=metadata_columns)
                IBD_level_4 = IBD_level_4.set_index('index')

                # Normalise the data around 0
                standardised = (IBD_level_4 - IBD_level_4.mean()) / IBD_level_4.std()

                # sets the sizing so as much of the label can be shown as possible
                fig = plt.figure(figsize=(11.7, 8.27))
                h = [Size.Fixed(6.), Size.Scaled(.5), Size.Fixed(.2)]
                v = [Size.Fixed(0.7), Size.Scaled(.5), Size.Fixed(.5)]
                divider = Divider(fig, (0, 0, 1, 1), h, v, aspect=False)
                ax = fig.add_axes(divider.get_position(),
                                  axes_locator=divider.new_locator(nx=1, ny=1))

                # Plots the relative frequency
                sns.boxplot(y="variable", x="value", data=pd.melt(standardised), showfliers=False, width=.6, ax=ax)
                ax.xaxis.grid(True)
                ax.set(ylabel="Bacteria", xlabel="Relative Abundance",
                       title="Relative Abundance for IBD for taxa at level 4")
                sns.despine(trim=True, left=True)
                plt.savefig(out_individual_boxplot)

                this_experiment = {
                    "_id": experiment_id,
                    "parent": parent_name,
                    "stage": CURRENT_STAGE,
                    "output": {
Esempio n. 20
0
    def memory_svg(self,
                   host=None,
                   title="Memory Usage",
                   unit="Bytes",
                   factor=1.0,
                   b64encode=True):
        fig = pyplot.figure(figsize=self.FIGSIZE)

        h = [Size.Fixed(1.2), Size.Scaled(1.), Size.Fixed(.2)]
        v = [Size.Fixed(0.7), Size.Scaled(1.), Size.Fixed(.5)]

        divider = Divider(fig, (0.0, 0.0, 1., 1.), h, v, aspect=False)
        plt = Axes(fig, divider.get_position())
        plt.set_axes_locator(divider.new_locator(nx=1, ny=1))

        fig.add_axes(plt)

        result = self.result
        runinfo = result.runinfo

        # ----
        # The X limits are -rampupMins, runMins
        # ----
        plt.set_xlim(-int(runinfo['rampupMins']), int(runinfo['runMins']))
        plt.axvspan(-int(runinfo['rampupMins']), 0, facecolor='0.2', alpha=0.1)

        x, y_used = self._get_metric_xy({
            'host': host,
            'metric': 'memory.memory-used',
            'factor': factor,
        })
        _, y_cached = self._get_metric_xy(
            {
                'host': host,
                'metric': 'memory.memory-cached',
                'factor': factor,
            }, x)
        _, y_buffered = self._get_metric_xy(
            {
                'host': host,
                'metric': 'memory.memory-buffered',
                'factor': factor,
            }, x)
        _, y_free = self._get_metric_xy(
            {
                'host': host,
                'metric': 'memory.memory-free',
                'factor': factor,
            }, x)

        # ----
        # It is possible that the mqtt based metric collector produces
        # CSV files with different numbers of lines. We cut all of them
        # to a combined minimum length.
        # ----
        min_len = min(len(x), len(y_used), len(y_cached), len(y_buffered),
                      len(y_free))
        x = x[:min_len]
        y_used = y_used[:min_len]
        y_cached = y_cached[:min_len]
        y_buffered = y_buffered[:min_len]
        y_free = y_free[:min_len]

        plt.stackplot(x,
                      y_used,
                      y_cached,
                      y_buffered,
                      y_free,
                      colors=[
                          'b',
                          'y',
                          'g',
                          'gray',
                      ],
                      labels=[
                          'Used',
                          'Cached',
                          'Buffered',
                          'Free',
                      ])

        # ----
        # Title and labels
        # ----
        plt.set_title(title)
        plt.set_xlabel("Elapsed Minutes")
        plt.set_ylabel(unit)
        plt.legend(loc='upper left')
        plt.grid()

        # ----
        # Now turn this into an in-memory SVG and return it as requested
        # (raw or b64-encoded)
        # ----
        buf = io.StringIO()
        pyplot.savefig(buf, format='svg')

        if not b64encode:
            return buf.getvalue()
        return base64.b64encode(buf.getvalue().encode('utf-8')).decode('utf-8')