def curvelinear_test1(fig): """Grid for custom transform.""" def tr(x, y): sgn = np.sign(x) x, y = np.abs(np.asarray(x)), np.asarray(y) return sgn * x**.5, y def inv_tr(x, y): sgn = np.sign(x) x, y = np.asarray(x), np.asarray(y) return sgn * x**2, y grid_helper = GridHelperCurveLinear( (tr, inv_tr), extreme_finder=ExtremeFinderSimple(20, 20), # better tick density grid_locator1=MaxNLocator(nbins=6), grid_locator2=MaxNLocator(nbins=6)) ax1 = Subplot(fig, 111, grid_helper=grid_helper) # ax1 will have a ticks and gridlines defined by the given # transform (+ transData of the Axes). Note that the transform of the Axes # itself (i.e., transData) is not affected by the given transform. fig.add_subplot(ax1) ax1.imshow(np.arange(25).reshape(5, 5), vmax=50, cmap=plt.cm.gray_r, origin="lower")
def test_axis_direction(): # Check that axis direction is propagated on a floating axis fig = plt.figure() ax = Subplot(fig, 111) fig.add_subplot(ax) ax.axis['y'] = ax.new_floating_axis(nth_coord=1, value=0, axis_direction='left') assert ax.axis['y']._axis_direction == 'left'
def test_Subplot(): fig = plt.figure() ax = Subplot(fig, 1, 1, 1) fig.add_subplot(ax) xx = np.arange(0, 2 * np.pi, 0.01) ax.plot(xx, np.sin(xx)) ax.set_ylabel("Test") ax.axis["top"].major_ticks.set_tick_out(True) ax.axis["bottom"].major_ticks.set_tick_out(True) ax.axis["bottom"].set_label("Tk0")
def lineGraph(all_data, eps): fig = plt.figure(1, (18 * 2, 9 * 2)) ax = Subplot(fig, 111) fig.add_subplot(ax) ax.plot(eps, all_data, 'ro-', label='POI聚类总数') ax.axis["right"].set_visible(False) ax.axis["top"].set_visible(False) ax.set_xlabel('聚类距离', fontsize=30) ax.set_ylabel('聚类总数', fontsize=30) ax.tick_params(labelsize=20) plt.legend() plt.savefig(os.path.join(savingFig, "lineGraph")) plt.show()
def curvelinear_test1(fig): """ grid for custom transform. """ def tr(x, y): sgn = np.sign(x) x, y = np.abs(np.asarray(x)), np.asarray(y) return sgn * x**.5, y def inv_tr(x, y): sgn = np.sign(x) x, y = np.asarray(x), np.asarray(y) return sgn * x**2, y extreme_finder = angle_helper.ExtremeFinderCycle( 20, 20, lon_cycle=None, lat_cycle=None, # (0, np.inf), lon_minmax=None, lat_minmax=None, ) grid_helper = GridHelperCurveLinear((tr, inv_tr), extreme_finder=extreme_finder) ax1 = Subplot(fig, 111, grid_helper=grid_helper) # ax1 will have a ticks and gridlines defined by the given # transform (+ transData of the Axes). Note that the transform of # the Axes itself (i.e., transData) is not affected by the given # transform. fig.add_subplot(ax1) ax1.imshow(np.arange(25).reshape(5, 5), vmax=50, cmap=plt.cm.gray_r, interpolation="nearest", origin="lower") # tick density grid_helper.grid_finder.grid_locator1._nbins = 6 grid_helper.grid_finder.grid_locator2._nbins = 6
def curvelinear_test1(fig): """ grid for custom transform. """ def tr(x, y): sgn = np.sign(x) x, y = np.abs(np.asarray(x)), np.asarray(y) return sgn*x**.5, y def inv_tr(x, y): sgn = np.sign(x) x, y = np.asarray(x), np.asarray(y) return sgn*x**2, y extreme_finder = angle_helper.ExtremeFinderCycle(20, 20, lon_cycle=None, lat_cycle=None, # (0, np.inf), lon_minmax=None, lat_minmax=None, ) grid_helper = GridHelperCurveLinear((tr, inv_tr), extreme_finder=extreme_finder) ax1 = Subplot(fig, 111, grid_helper=grid_helper) # ax1 will have a ticks and gridlines defined by the given # transform (+ transData of the Axes). Note that the transform of # the Axes itself (i.e., transData) is not affected by the given # transform. fig.add_subplot(ax1) ax1.imshow(np.arange(25).reshape(5, 5), vmax=50, cmap=plt.cm.gray_r, interpolation="nearest", origin="lower") # tick density grid_helper.grid_finder.grid_locator1._nbins = 6 grid_helper.grid_finder.grid_locator2._nbins = 6
def test_Subplot(): # Remove this line when this test image is regenerated. plt.rcParams['text.kerning_factor'] = 6 fig = plt.figure() ax = Subplot(fig, 1, 1, 1) fig.add_subplot(ax) xx = np.arange(0, 2 * np.pi, 0.01) ax.plot(xx, np.sin(xx)) ax.set_ylabel("Test") ax.axis["top"].major_ticks.set_tick_out(True) ax.axis["bottom"].major_ticks.set_tick_out(True) ax.axis["bottom"].set_label("Tk0")
def test_subplot(): fig = plt.figure(figsize=(5, 5)) ax = Subplot(fig, 111) fig.add_subplot(ax)
server_type_category = cursor.fetchall() print(server_type_category) first_image_frequency_x = [15, 16, 17, 19, 20, 21] first_image_vcpu_count = [4, 6, 8, 10, 12, 14] line_color = ['dimgrey', 'black', 'slategray'] line_marker = ['v', '^', 's', 'p'] figure = plt.figure(figsize=(10, 10)) # fig, axes = plt.subplots(int(len(first_image_vcpu_count) / 2), 2) # ax=axisartist.Subplot(fig,2,2,1) # fig.add_axes(ax) # ax.axis["bottom"].set_axisline_style("-|>", size = 1.5) # ax.axis["left"].set_axisline_style("->", size = 1.5) for cpu_count_index in range(0, len(first_image_vcpu_count)): ax = Subplot(figure, int(len(first_image_vcpu_count) / 2), 2, cpu_count_index + 1) figure.add_subplot(ax) values = {} values["memory_count"] = "4" for server_type_index in range(0, len(server_type_category)): values["server_type"] = server_type_category[server_type_index][0] # ax = axes[int(cpu_count_index / 2), cpu_count_index % 2] values["cpu_number"] = first_image_vcpu_count[cpu_count_index] result = [] for cpu_frequency_index in range(0, len(first_image_frequency_x)): values["cpu_frequency"] = first_image_frequency_x[ cpu_frequency_index] cursor_DictCursor.execute(select_record, values) print(values) select_result = cursor_DictCursor.fetchall() print(select_result)
standard_average_energy = np.nan*np.ones(shape=(len(accuracy_required),len(no_of_hidden_nodes))) caching_average_energy = np.nan*np.ones(shape=(len(accuracy_required),len(no_of_hidden_nodes))) for iAccu in range(len(accuracy_required)): for iNode in range(len(no_of_hidden_nodes)): tmp = ~np.isnan(standard_energy[iAccu][iNode]) standard_average_energy[iAccu][iNode] = np.mean(standard_energy[iAccu][iNode][tmp]) tmp = ~np.isnan(caching_energy[iAccu][iNode]) caching_average_energy[iAccu][iNode] = np.mean(caching_energy[iAccu][iNode][tmp]) arr_color = ['red','black'] arr_linestyle = ['-','--',':'] arr_label = ['No caching','Synaptic caching'] fig = plt.figure(facecolor="white",figsize=(4.5,4)) ax = Subplot(fig,111) fig.add_subplot(ax) for iAccu in range(len(accuracy_required)): plt.plot(no_of_hidden_nodes,standard_average_energy[iAccu],color=arr_color[0],linewidth=3,linestyle=arr_linestyle[iAccu],label=arr_label[0]+', '+str(accuracy_required[iAccu])) plt.plot(no_of_hidden_nodes,caching_average_energy[iAccu],color=arr_color[1],linewidth=3,linestyle=arr_linestyle[iAccu],label=arr_label[1]+', '+str(accuracy_required[iAccu])) plt.xlabel('# hidden units',fontsize=24) #plt.ylabel('Energy [arbitrary unit]',fontsize=28) plt.yscale('log') plt.xlim(0,no_of_hidden_nodes[0]) #plt.xticks(np.linspace(0,10,11)) plt.ylim(1e3,1e6) plt.xticks([0,50,100,150,200]) plt.yticks([1e3,1e4,1e5,1e6]) ax.axis["right"].set_visible(False) ax.axis["top"].set_visible(False) #ax.axis["bottom"].label.set_text('# hidden units')
DFs = [] for root, dirs, files in os.walk( dir_path): #第一个为起始路径,第二个为起始路径下的文件夹,第三个是起始路径下的文件。 for file in files: file_path = os.path.join(root, file) #将路径名和文件名组合成一个完整路径 df = pd.read_excel(file_path) #excel转换成DataFrame DFs.append(df) df = pd.concat(DFs) df = df.query('50>胸径>20') """ 胸径树高频率频数分布拟合 """ x = np.array(df['胸径']) fig = plt.figure(figsize=(10, 6)) ax = Subplot(fig, 221) fig.add_subplot(ax) ax.axis["right"].set_visible(False) ax.axis["top"].set_visible(False) n, bins, c = ax.hist(df['胸径'], bins=range(23, 51, 2), edgecolor='black') y = n x = bins[:-1] ztfb = get_curve_fit_param(x, y, func, p0=[5, 35, 6]) ztfbpre = func(x, *ztfb) # ax.plot(x,y,'r*',ls='-') ax.plot(x, ztfbpre, 'b+', ls='-', color='orange') wbfb = get_curve_fit_param(x, y, weib, p0=[20, 20, 5]) wbfbpre = weib(x, *wbfb) # plt.plot(x,y,'r*') ax.plot(x, wbfbpre, 'b+', ls='-') plt.xticks(range(24, 51, 2))
server_type_category = cursor.fetchall() print(server_type_category) first_image_frequency_x = [15, 16, 17, 19, 20, 21] first_image_vcpu_count = [1, 2, 4, 6, 8, 10] line_color = ['dimgrey', 'black', 'silver'] line_marker = ['v', '^', 's', 'p'] figure = plt.figure(figsize=(11, 11)) # fig, axes = plt.subplots(int(len(first_image_vcpu_count) / 2), 2) # ax=axisartist.Subplot(fig,2,2,1) # fig.add_axes(ax) # ax.axis["bottom"].set_axisline_style("-|>", size = 1.5) # ax.axis["left"].set_axisline_style("->", size = 1.5) for cpu_count_index in range(0, len(first_image_vcpu_count)): ax = Subplot(figure, int(len(first_image_vcpu_count) / 2), 2, cpu_count_index + 1) figure.add_subplot(ax) values = {} values["memory_count"] = "4" line_list = [] server_type_list = [] for server_type_index in range(0, len(server_type_category) - 1): values["server_type"] = server_type_category[server_type_index][0] server_type_list.append(server_type_category[server_type_index][0]) # ax = axes[int(cpu_count_index / 2), cpu_count_index % 2] values["cpu_number"] = first_image_vcpu_count[cpu_count_index] result = [] for cpu_frequency_index in range(0, len(first_image_frequency_x)): values["cpu_frequency"] = first_image_frequency_x[ cpu_frequency_index] cursor_DictCursor.execute(select_record, values)
def tbme_plot(r_name, bg_ham, curr_ham, vlc_num): # I want a TBME scatter plot for fitted TBME a = bg_ham.strong.copy() a = a[a['group'] != 'other'] b = curr_ham.strong.copy() b = b[b['group'] != 'other'] c = a.merge(b, left_on=['k1', 'k2', 'k3', 'k4', 'j', 't'], right_on=['k1', 'k2', 'k3', 'k4', 'j', 't']) fig = plt.figure(figsize=(6, 6)) matplotlib.rcParams.update({'font.size': 12}) ax = Subplot(fig, 111) fig.add_subplot(ax) ax.set_xlabel('TBME (MeV) starting') ax.set_ylabel('TBME (MeV) with {} vlc'.format(vlc_num)) ax.set_aspect('equal') x, y = c['v_x'].tolist(), c['v_y'].tolist() min, max = -3, 1. plt.xticks(np.arange(min, max, 0.5)) plt.yticks(np.arange(min, max, 0.5)) plt.plot([min, max], [min, max], ls='--', color='black') ax.scatter(x, y) ax.axhline(0., ls='-', color='black') ax.axvline(0., ls='-', color='black') plt_name = r_name + '\\tbme-vlc-{}.png'.format(vlc_num) plt.savefig(plt_name) plt.close(fig) return
""" ================ Simple Axisline3 ================ """ import matplotlib.pyplot as plt from mpl_toolkits.axisartist.axislines import Subplot fig = plt.figure(1, (3,3)) ax = Subplot(fig, 111) fig.add_subplot(ax) ax.axis["right"].set_visible(False) ax.axis["top"].set_visible(False) plt.show()
select_record = "select * from pi5000 where server_type=%(server_type)s and cpu_number=%(cpu_number)s and cpu_frequency=%(cpu_frequency)s and memory_count=%(memory_count)s" select_server_type_category = "select distinct server_type from pi5000 " cursor.execute(select_server_type_category) server_type_category = cursor.fetchall() print(server_type_category) first_image_frequency_x = [12, 13, 15, 16, 17, 19, 20, 21] first_image_vcpu_count = [8] line_color = ['dimgrey', 'black', 'silver'] line_marker = ['v', '^', 's', 'p'] figure = plt.figure(figsize=(5, 5)) for cpu_count_index in range(0, len(first_image_vcpu_count)): ax = Subplot(figure, 1, 1, 1) figure.add_subplot(ax) values = {} values["memory_count"] = "4" line_list = [] server_type_list = [] for server_type_index in range(0, len(server_type_category) - 1): values["server_type"] = server_type_category[server_type_index][0] server_type_list.append(server_type_category[server_type_index][0]) # ax = axes[int(cpu_count_index / 2), cpu_count_index % 2] values["cpu_number"] = first_image_vcpu_count[cpu_count_index] result = [] for cpu_frequency_index in range(0, len(first_image_frequency_x)): values["cpu_frequency"] = first_image_frequency_x[ cpu_frequency_index] cursor_DictCursor.execute(select_record, values)