Esempio n. 1
0
 def term_sheet_to_json(self,
                        window=30,
                        windows=[30, 60, 90, 120],
                        quantiles=[0.25, 0.75],
                        bins=100,
                        normed=True,
                        bench='SPY',
                        open=False):
     ext = '.json'
     cones_fig, cones_plt = self.cones(windows=windows, quantiles=quantiles)
     rolling_quantiles_fig, rolling_quantiles_plt = self.rolling_quantiles(
         window=window, quantiles=quantiles)
     rolling_extremes_fig, rolling_extremes_plt = self.rolling_extremes(
         window=window)
     rolling_descriptives_fig, rolling_descriptives_plt = self.rolling_descriptives(
         window=window)
     histogram_fig, histogram_plt = self.histogram(window=window,
                                                   bins=bins,
                                                   normed=normed)
     mpld3.save_json(cones_fig, self.define_fig("cones", ext))
     mpld3.save_json(rolling_quantiles_fig,
                     self.define_fig("rolling_quantiles", ext))
     mpld3.save_json(rolling_extremes_fig,
                     self.define_fig("rolling_extremes", ext))
     mpld3.save_json(rolling_descriptives_fig,
                     self.define_fig("rolling_desc", ext))
     mpld3.save_json(histogram_fig, self.define_fig("histogram", ext))
     pyplt.close(cones_fig)
     pyplt.close(rolling_quantiles_fig)
     pyplt.close(rolling_extremes_fig)
     pyplt.close(rolling_descriptives_fig)
     pyplt.close(histogram_fig)
Esempio n. 2
0
def sin_cos_d3_save():
    """
    Web上でy=sin(x), y=cos(x)の図の表示するためのデータをJSONで保存
    :return:
    """
    base = os.path.dirname(os.path.abspath(__file__))
    path = os.path.normpath(os.path.join(base, 'result/sin_cos.json'))
    plt = sin_cos_plt()
    mpld3.save_json(plt.gcf(), open(path, "w"))
Esempio n. 3
0
def figlist_to_json(rootname, figlist, postfixes=None):
    from matplotlib.backends.backend_agg import FigureCanvasAgg
    from itertools import izip, count
    from mpld3 import save_json

    if postfixes is None:
        postfixes = ("fig%02d" % i for i in count(1))

    for postfix, fig in izip(postfixes, figlist):
        FigureCanvasAgg(fig)
        save_json(fig, "%s_%s.json" % (rootname, postfix))
Esempio n. 4
0
def figlist_to_json(rootname, figlist, postfixes=None):
    from matplotlib.backends.backend_agg import FigureCanvasAgg
    from itertools import izip, count
    from mpld3 import save_json

    if postfixes is None:
        postfixes = ("fig%02d" % i for i in count(1))

    for postfix, fig in izip(postfixes, figlist):
        FigureCanvasAgg(fig)
        save_json(fig, "%s_%s.json" % (rootname, postfix))
Esempio n. 5
0
 def to_html(self, title,  subfolder, index_filename, template_name):
     subfolder = subfolder.replace(" ","_")
     
     if subfolder != '':
         try:
             os.makedirs(os.path.join(self.local_folder, subfolder))
         except:
             pass
         
         subfolder += '/' 
         
     #use mpl3d to create a json file for every matplotlib figure
     #these json files will be copied to S3, to be loaded by a web browser and visualized by the MPLD3 library
     for idx, (key,val) in enumerate(self.items()):
         
         if val['datatype']=='MPLD3':
             json_filename = subfolder + key.replace(" ","_") + '.json'
             mpld3.save_json(val['data'], os.path.join(self.local_folder, json_filename))  #val['data'] is expected to be a matplotlib figure; save the json file to the local folder, it will be copied to S3
             val['filename'] = json_filename  #add the json's filename to the dictionary, it will be use dby the jinja2 template (in the javascript to load json from S3)
             
         elif val['datatype']=='MPLPNG':
             png_filename = key.replace(" ","_") + '.png'
             val['data'].savefig(os.path.join(self.local_folder, subfolder+png_filename))  #val['data'] is expected to be a matplotlib figure
             #del val['data']
             #gc.collect()
             val['filename'] = png_filename  #add the png's filename to the dictionary, it will be used by the jinja2 template to create a IMG tag with this file as source)
         else:
             pass
         
    #use Jinja2 to instantiate a web page that will load these json files and display the plots with the mpl3d javascript front-end
     env = Environment(
         loader=FileSystemLoader('./covid/templates'),
         #autoescape=select_autoescape(['html', 'xml'])
     )
     
     template = env.get_template(template_name)
     page = template.render(title=title, items=self)
     
     file = open(os.path.join(self.local_folder,subfolder+index_filename),'w')
     file.write(page)
     file.close()
Esempio n. 6
0
import mpld3
import matplotlib
import matplotlib.pyplot as plt



labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'

sizes = [15, 30, 45, 10]

explode = (0, 0.1, 0, 0)  # only "explode" the 2nd slice (i.e. 'Hogs')



fig, ax = plt.subplots()

ax.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',

        shadow=True, startangle=90)

ax.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.

fig_var = [x[0] for x in locals().items() if isinstance(x[1], matplotlib.pyplot.Figure)][0]
print(fig_var)
globals()[fig_var] = matplotlib.pyplot.Figure
mpld3.save_json(fig_var, fileobj='json_fig.json')
Esempio n. 7
0
#!/usr/bin/python

import matplotlib.pyplot as plt
import numpy as np
import mpld3

N = 20

fig, ax = plt.subplots()

x = np.random.rand(N)
y = np.random.rand(N)

ax.plot(x, y)
mpld3.save_html(fig,"figout.html")
mpld3.save_json(fig,"figout.json")

html = mpld3.fig_to_html(fig,"figout.json")
print html

#https://stackoverflow.com/questions/22981359/display-multiple-mpld3-exports-on-a-single-html-page
Esempio n. 8
0
# In[13]:

## Plot Extents

# Plot pan-Arctic sea ice extent
f = plt.figure(figsize=(10, 5))
ax1 = plt.subplot(1, 1, 1)  # Observations
da_81_30_avg.plot(ax=ax1, label='NSIDC NRT\n (Maslanik et al. 1999)')
ds_ext.sel(datetime=da_81_30_avg.time).Extent.plot(label='NSIDC V3', color='m')
ax1.set_ylabel('Millions of square km')
plt.legend(loc='lower right')  #bbox_to_anchor=(1.03, 1.05))
# Save to png and json (for website)
f_name = os.path.join(fig_dir, 'panArcticSIC_Forecast_30days')
plt.title('Last 30 days')
f.savefig(f_name + '.png', bbox_inches='tight', dpi=200)
mpld3.save_json(f, f_name + '.json')
mpld3.save_html(f, f_name + '.html')

## Plot pan-Arctic sea ice extent
f = plt.figure(figsize=(10, 5))
ax1 = plt.subplot(1, 1, 1)  # Observations
da_81_3m_avg.plot(ax=ax1, label='NSIDC NRT\n (Maslanik et al. 1999)')
ds_ext.sel(datetime=da_81_3m_avg.time).Extent.plot(label='NSIDC V3', color='m')
plt.title('Last 3 months')
ax1.set_ylabel('Millions of square km')
plt.legend(loc='lower right')
f.savefig(os.path.join(fig_dir, 'panArcticSIC_Forecast_3months.png'),
          bbox_inches='tight',
          dpi=200)

# Plot Recent maps
Esempio n. 9
0
def PCA2d(sleppa, toflur):

    # prófa fyrst að taka bara costoflivingindex og veðrið í viku 30
    # töflurnar geta verið prices, costoflivingindex, qualityoflifeindex, weathereurope og weatherchanceseurope

    pca = PCA(n_components=2)
    fig, ax = plt.subplots(subplot_kw=dict(axisbg='#EEEEEE'))
    if (len(toflur) == 1):
        if "WeatherEurope" in toflur or "WeatherChancesEurope" in toflur:
            query = cur.execute("SELECT * FROM " + toflur[0] +
                                " where week = 20")
            cols = [column[0] for column in query.description]

            results = pd.DataFrame.from_records(data=query.fetchall(),
                                                columns=cols)

            cities = results['city'].tolist()

            dropColumns = ['week', 'city']
            if toflur[0] == "WeatherEurope":
                dropColumns.append('cloud_cover')
            results.drop(columns=dropColumns, inplace=True)
            results = results.apply(pd.to_numeric)
            resultsScaled = preprocessing.StandardScaler().fit_transform(
                results)

            principalComponentsScaled = pca.fit_transform(resultsScaled)
            principalDfScaled = pd.DataFrame(
                data=principalComponentsScaled,
                columns=['principal component 1', 'principal component 2'])

            N = len(cities)
            col = np.random.rand(N)

            mynd = ax.scatter(principalDfScaled['principal component 1'],
                              principalDfScaled['principal component 2'],
                              c=col,
                              alpha=0.5)
            ax.set_title("2-dimensional PCA of weather in Europe in late June")

        if "CostOfLivingIndex" in toflur or "QualityOfLifeIndex" in toflur:

            query2 = cur.execute("SELECT * from " + toflur[0])
            cols = [column[0] for column in query2.description]

            results2 = pd.DataFrame.from_records(data=query2.fetchall(),
                                                 columns=cols)

            cities2 = results2['City'].tolist()

            results2.drop(columns=['City', 'Rank'], inplace=True)

            results2 = results2.apply(pd.to_numeric)

            results2Scaled = preprocessing.StandardScaler().fit_transform(
                results2)
            principalComponentsScaled2 = pca.fit_transform(results2Scaled)
            principalDfScaled2 = pd.DataFrame(
                data=principalComponentsScaled2,
                columns=['principal component 1', 'principal component 2'])

            col = np.random.rand(len(cities2))

            mynd = ax.scatter(principalDfScaled2['principal component 1'],
                              principalDfScaled2['principal component 2'],
                              c=col,
                              alpha=0.5)
            if ("CostOfLivingIndex" in toflur):
                ax.set_title("2-dimensional PCA of cost of living indeces")
            else:
                ax.set_title("2-dimensional PCA of quality of life indeces")
        if "Prices" in toflur:
            query3 = cur.execute("SELECT * from " + toflur[0])
            cols = [column[0] for column in query2.description]
            print(cols)
            results3 = pd.DataFrame.from_records(data=query3.fetchall(),
                                                 columns=cols)

            cities3 = results3['City'].tolist()
            irrelevantAttributes = [
                "City", "Monthly Pass", "Volkswagen Golf", "Toyota Corolla",
                "Basic Utilities", "Internet", "Fitness Club",
                "Tennis Court Rent", "Preschool Month", "Primary School Year",
                "Rent 1 Bedroom Center"
                "Rent 1 Bedroom Outside Center"
                "Rent 3 Bedrooms Center", "Rent 3 Bedrooms Outside Center",
                "Price m2 Center", "Price m2 Outside Center",
                "Average Monthly Salary After Tax", "Mortgage Interest Rate"
            ]

            results3.drop(columns=irrelevantAttributes, inplace=True)

            results3 = results3.apply(pd.to_numeric)

            results3Scaled = preprocessing.StandardScaler().fit_transform(
                results3)
            principalComponentsScaled3 = pca.fit_transform(results3Scaled)
            principalDfScaled3 = pd.DataFrame(
                data=principalComponentsScaled3,
                columns=['principal component 1', 'principal component 2'])

            col = np.random.rand(len(cities3))

            mynd = ax.scatter(principalDfScaled3['principal component 1'],
                              principalDfScaled3['principal component 2'],
                              c=col,
                              alpha=0.5)
            ax.set_title("2-dimensional PCA of prices of goods")

    else:
        # sameina
        toflulisti = []

        for tafla in toflur:

            if tafla == "WeatherEurope" or tafla == "WeatherChancesEurope":
                query = cur.execute("SELECT * FROM " + tafla +
                                    " where week = 20")
                cols = [column[0] for column in query.description]

                results = pd.DataFrame.from_records(data=query.fetchall(),
                                                    columns=cols)

                cities = results['city'].tolist()

                toflulisti.append(results)

            if tafla == "CostOfLivingIndex" or tafla == "QualityOfLifeIndex":

                query2 = cur.execute("SELECT * from " + tafla)
                cols = [column[0] for column in query2.description]

                results2 = pd.DataFrame.from_records(data=query2.fetchall(),
                                                     columns=cols)

                cities = results2['City'].tolist()
                results2.drop(sleppa[1], axis=1)
                results2.drop("Rank", axis=1, inplace=True)
                results2.rename(index=str,
                                columns={"City": "city"},
                                inplace=True)

                toflulisti.append(results2)

            if tafla == "Prices":
                query3 = cur.execute("SELECT * from " + toflur[0])
                cols = [column[0] for column in query2.description]

                results3 = pd.DataFrame.from_records(data=query3.fetchall(),
                                                     columns=cols)

                cities3 = results3['City'].tolist()
                irrelevantAttributes = [
                    "City", "Monthly Pass", "Volkswagen Golf",
                    "Toyota Corolla", "Basic Utilities", "Internet",
                    "Fitness Club", "Tennis Court Rent", "Preschool Month",
                    "Primary School Year", "Rent 1 Bedroom Center"
                    "Rent 1 Bedroom Outside Center"
                    "Rent 3 Bedrooms Center", "Rent 3 Bedrooms Outside Center",
                    "Price m2 Center", "Price m2 Outside Center",
                    "Average Monthly Salary After Tax",
                    "Mortgage Interest Rate"
                ]

                results3.drop(columns=irrelevantAttributes, inplace=True)

                toflulisti.append(results3)

        saman = reduce((lambda results, results2: pd.merge(results,
                                                           results2,
                                                           how='inner',
                                                           left_on=['city'],
                                                           right_on=['city'])),
                       toflulisti)

        cities = list(saman["city"])

        samandrop = ['city', 'week', 'cloud_cover']
        saman.drop(columns=samandrop, inplace=True)

        samanScaled = preprocessing.StandardScaler().fit_transform(saman)

        principalComponentsScaledSaman = pca.fit_transform(samanScaled)
        principalDfScaledSaman = pd.DataFrame(
            data=principalComponentsScaledSaman,
            columns=['principal component 1', 'principal component 2'])
        col = np.random.rand(len(saman))

        mynd = ax.scatter(principalDfScaledSaman['principal component 1'],
                          principalDfScaledSaman['principal component 2'],
                          c=col,
                          alpha=0.5)


# frekar en að hafa results, results2 o.s.frv. þá get ég haft lista/dict  results["WeatherEurope"], results["CostOfLivingIndex"]
# Prices og QualityOfLifeIndex er keimlíkt CostOfLivingIndex
# WeatherChancesEurope er keimlíkt WeatherEurope
# nema það þarf að droppa öðrum dálkum

    ax.set_xlabel('Principal Component 1', fontsize=15)
    ax.set_ylabel('Principal Component 2', fontsize=15)
    if (len(toflur) > 1):
        title = "2-dimensional PCA of " + toflur[0]
        i = 1
        for tafla in toflur[1:]:
            if i != (len(toflur) - 1):
                title = title + ", " + tafla + " "
            else:
                title = title + " and " + tafla
            i = i + 1
        ax.set_title(title)
    # vantar að staðfesta að röðin sé eins?

    tooltip = mpld3.plugins.PointLabelTooltip(mynd, labels=cities)
    mpld3.plugins.connect(fig, tooltip)

    mpld3.save_json(fig, "PCA.json")
Esempio n. 10
0
def one_bar_per_cmd(args):
    matplotlib.rcParams['axes.labelsize'] = args.fontsize
    matplotlib.rcParams['axes.titlesize'] = args.fontsize + 2
    matplotlib.rcParams['xtick.labelsize'] = args.fontsize
    matplotlib.rcParams['ytick.labelsize'] = args.fontsize
    matplotlib.rcParams['legend.fontsize'] = args.fontsize
    matplotlib.rcParams['font.family'] = 'serif'
    matplotlib.rcParams['font.serif'] = ['Computer Modern Roman']
    matplotlib.rcParams['text.usetex'] = True
    matplotlib.rcParams['figure.max_open_warning'] = 400
    matplotlib.rcParams['image.cmap'] = "gray"
    matplotlib.rcParams['image.interpolation'] = "none"
    matplotlib.rcParams['figure.autolayout'] = True
    pylab.clf()  # Essential! Otherwise the plots will be f**d up!
    pylab.figure(1)
    pylab.gca().yaxis.grid(True)  # Makes it easier to compare bars
    pylab.gca().xaxis.grid(False)
    pylab.gca().set_axisbelow(True)
    plt.style.use(args.pyplot_style)

    cmd_list = json.load(args.results)['cmd_list']
    cmd_list = util.filter_cmd_list(cmd_list, args.labels_to_include,
                                    args.labels_to_exclude)
    (cmd_list, label_map) = util.translate_dict(cmd_list, args.label_map)

    # For a bar-chart, we need labels, values, and errors
    labels = [util.texsafe(cmd['label']) for cmd in cmd_list]
    values = []
    std = []
    for cmd in cmd_list:
        res = util.extract_succeed_results(cmd, args.parse_regex, args.py_type)
        if len(res) == 0:
            res = [0]
        values.append(util.mean(res))
        std.append(util.standard_deviation(res))

    # Let's write the bar-chart using matplotlib
    margin = 0.05
    width = (1. - 1. * margin) / len(cmd_list)
    ind = np.arange(len(cmd_list))  # the x locations for each bar
    fig, ax = plt.subplots()
    ax.bar(ind * width, values, width, log=args.ylog, yerr=std)

    if args.ymin is not None:
        plt.ylim(ymin=float(args.ymin))
    if args.ymax is not None:
        plt.ylim(ymax=float(args.ymax))
    if args.title is not None:
        plt.title(util.texsafe(args.title))

    # Add some text for labels, title and axes ticks
    ax.set_xticks(ind * width + width / 2.)
    ax.set_xticklabels(labels, rotation=args.xticklabel_rotation)

    if args.ylabel is not None:
        ax.set_ylabel(args.ylabel)

    # Now make some labels
    value_labels(ax, ax.patches)

    if args.output is not None:
        fname = args.output.name
        fformat = fname.split('.')[-1]
        print("Writing file '%s' using format '%s'." % (fname, fformat))
        if args.mpld3:
            import mpld3
            if fformat == "html":
                mpld3.save_html(fig, args.output)
            elif fformat == "json":
                mpld3.save_json(fig, args.output)
            else:
                raise ValueError(
                    "--mpld3: The output must be either `html` or `json`")
        else:
            pylab.savefig(fname, format=fformat)
    else:
        if args.mpld3:
            import mpld3
            mpld3.show()
        else:
            pylab.show()
Esempio n. 11
0
    def makePlot(self,
                 noTightLayout=False,
                 figHeight='100%',
                 figWidth='100%',
                 centeredStyle=None):

        current_figure = plt.gcf()

        if self.usesMPLD3():
            plugins.connect(current_figure, plugins.MousePosition(fontsize=14))

        if self.outputType == PlotSaveTYPE.HTML_STRING:

            if centeredStyle == None:
                centeredStyle = self.centeredStyle

            outString = mpld3.fig_to_html(current_figure,
                                          template_type='notebook',
                                          d3_url=self.d3js,
                                          mpld3_url=self.mpld3js,
                                          figHeight=figHeight,
                                          figWidth=figWidth,
                                          styles=centeredStyle)
            self.createdPlots.append(outString)
            plt.close(current_figure)
            return

        if self.outputType == PlotSaveTYPE.D3:
            mpld3.show(current_figure)

        if self.save_to_file:

            exactFilename = self.save_file + ".%02d." + PlotSaveTYPE.getFileExtension(
                self.outputType)
            exactFilename = exactFilename % self.saved_plot
            self.saved_plot += 1

            if self.outputType == PlotSaveTYPE.HTML:
                mpld3.save_html(current_figure,
                                exactFilename,
                                template_type='simple',
                                d3_url=self.d3js,
                                mpld3_url=self.mpld3js)
            elif self.outputType == PlotSaveTYPE.JSON:
                mpld3.save_json(current_figure,
                                exactFilename,
                                d3_url=self.d3js,
                                mpld3_url=self.mpld3js)
            elif self.outputType == PlotSaveTYPE.PNG:
                plt.savefig(exactFilename,
                            transparent=self.transparent_bg,
                            bbox_inches='tight')

            self.createdPlots.append(exactFilename)

        else:  # if self.outputType == PlotSaveTYPE.MPL

            if not noTightLayout:

                legends = current_figure.legends

                makeTightLayout = True
                for lgd in legends + [
                        ax.legend_ for ax in current_figure.axes
                ]:

                    if lgd == None:
                        continue

                    lgd.set_draggable(True)

                    makeTightLayout = makeTightLayout and lgd._bbox_to_anchor == None

                if makeTightLayout:
                    plt.tight_layout()

            plt.show()

        plt.close(current_figure)
Esempio n. 12
0
def line_per_cmd(args):
    import matplotlib
    if args.output is not None:
        matplotlib.use('Agg') # We need this to make matplotlib work on systems with no DISPLAY
    import matplotlib.pyplot as plt
    import pylab

    matplotlib.rcParams.update({'figure.subplot.right': args.plot_size})
    matplotlib.rcParams.update({'figure.subplot.bottom': args.plot_size})
    plt.style.use(args.pyplot_style)

    # First we create `means` which map a command label and date to a pair of mean and standard deviation
    # e.g. means['Bean']['2017-05-02 13:29:34.87'] = (0.1289, 0.0006)
    (means, cmd_labels, meta_keys) = util.means_series_map(args)

    # Let's write a plot line for each command label
    fig, ax = plt.subplots()
    lines = []
    for cmd_label in cmd_labels:
        x, y, err = ([], [], [])
        for i in range(len(meta_keys)):
            (mean, std) = means[cmd_label].get(meta_keys[i], (0, 0))
            x.append(i)
            y.append(mean)
            err.append(std)
        lines.append(ax.errorbar(x, y, fmt='-o', yerr=err))

    if args.ymin is not None:
        plt.ylim(ymin=float(args.ymin))
    if args.ymax is not None:
        plt.ylim(ymax=float(args.ymax))
    if args.title is not None:
        plt.title(util.texsafe(args.title))

    # Add some text for labels, title and axes ticks
    ax.set_xticks(range(len(meta_keys)))
    ax.set_xticklabels(meta_keys, rotation=args.xticklabel_rotation)

    if not args.no_legend and not args.mpld3: # mpld3 comes with its own legends
        ax.legend(lines, cmd_labels, loc='best', fancybox=True, shadow=True)

    if args.mpld3:
        import mpld3
        from mpld3 import plugins
        interactive_legend = plugins.InteractiveLegendPlugin(lines, cmd_labels)
        plugins.connect(fig, interactive_legend)

    if args.output is not None:
        fname = args.output.name
        fformat = fname.split('.')[-1]
        print ("Writing file '%s' using format '%s'." % (fname, fformat))
        if args.mpld3:
            if fformat == "html":
                mpld3.save_html(fig, args.output)
            elif fformat == "json":
                mpld3.save_json(fig, args.output)
            else:
                raise ValueError("--mpld3: The output must be either `html` or `json`")
        else:
            pylab.savefig(args.output, format=fformat)
    else:
        if args.mpld3:
            mpld3.show()
        else:
            pylab.show()
Esempio n. 13
0
fg = folium.FeatureGroup('my map')
min = 200
max = 300
m = folium.Map(location=[12.9752848, 77.5070119], zoom_start=10)
# MON = list(data["Mon"])
# TUE = list(data["Tue"])

x=[' ', '']
y=[5,9]
plt.xlabel('MON________________________________________________TUE       ')
plt.ylabel('Sales->')
plt.title('Data')
# plt.bar(x,y)
plt.bar(x,y)
plt.savefig("teettt.png")
vis3= mpld3.save_json(plt.figure(), "teettttttt.html")
n = "teettttttt.html"
html_image = "<!DOCTYPE html><html><body><h2>HTML Image</h2><img src='C:/Users/admin/Desktop/teettt.jpg' alt=\"Girl in a jacket\" width=\"500\" height=\"600\"></body></html>"
bar = "http://127.0.0.1:8898/"


text_file = open("test_image.html", "w")
n = text_file.write(html_image)
text_file.close()





cluster = folium.plugins.MarkerCluster().add_to(m)
Esempio n. 14
0
 def to_json(self):
     str_buffer = StringIO.StringIO()
     mpld3.save_json(self.content, str_buffer)
     return str_buffer.getvalue()