Esempio n. 1
0
def animate(ival):
    if (20 + ival) > len(df):
        print('no more data to plot')
        ani.event_source.interval *= 3
        if ani.event_source.interval > 12000:
            exit()
        return
    data = df.iloc[0:(30 + ival)]
    exp12 = data['Close'].ewm(span=12, adjust=False).mean()
    exp26 = data['Close'].ewm(span=26, adjust=False).mean()
    macd = exp12 - exp26
    signal = macd.ewm(span=9, adjust=False).mean()
    histogram = macd - signal
    apds = [
        mpf.make_addplot(exp12, color='lime', ax=ax_emav),
        mpf.make_addplot(exp26, color='c', ax=ax_emav),
        mpf.make_addplot(histogram,
                         type='bar',
                         width=0.7,
                         color='dimgray',
                         alpha=1,
                         ax=ax_hisg),
        mpf.make_addplot(macd, color='fuchsia', ax=ax_macd),
        mpf.make_addplot(signal, color='b', ax=ax_sign),
    ]

    for ax in axes:
        ax.clear()
    mpf.plot(data, type='candle', addplot=apds, ax=ax_main, volume=ax_volu)
Esempio n. 2
0
def test_addplot03(bolldata):
    df = bolldata

    fname = base + '03.png'
    tname = os.path.join(tdir, fname)
    rname = os.path.join(refd, fname)

    tcdf = df[['LowerB', 'UpperB']]  # DataFrame with two columns

    low_signal = percentB_belowzero(df['PercentB'], df['Close'])
    high_signal = percentB_aboveone(df['PercentB'], df['Close'])

    apds = [
        mpf.make_addplot(tcdf),
        mpf.make_addplot(low_signal, scatter=True, markersize=200, marker='^'),
        mpf.make_addplot(high_signal, scatter=True, markersize=200,
                         marker='v'),
        mpf.make_addplot((df['PercentB']), panel='lower', color='g')
    ]

    mpf.plot(df, addplot=apds, figscale=1.3, volume=True, savefig=tname)

    tsize = os.path.getsize(tname)
    print(glob.glob(tname), '[', tsize, 'bytes', ']')

    rsize = os.path.getsize(rname)
    print(glob.glob(rname), '[', rsize, 'bytes', ']')

    result = compare_images(rname, tname, tol=IMGCOMP_TOLERANCE)
    if result is not None:
        print('result=', result)
    assert result is None
Esempio n. 3
0
def animate(ival):
    global df, rs
    nxt = rtapi.fetch_next()
    if nxt is None:
        print('no more data to plot')
        exit()
    df = df.append(nxt)
    rs = df.resample(resample_period).agg(resample_map).dropna()
    if len(rs) > 90:
        rs = rs[-90:]
    data = rs
    exp12 = data['Close'].ewm(span=12, adjust=False).mean()
    exp26 = data['Close'].ewm(span=26, adjust=False).mean()
    macd = exp12 - exp26
    signal = macd.ewm(span=9, adjust=False).mean()
    histogram = macd - signal
    apds = [
        mpf.make_addplot(exp12, color='lime', ax=ax_emav),
        mpf.make_addplot(exp26, color='c', ax=ax_emav),
        mpf.make_addplot(histogram,
                         type='bar',
                         width=0.7,
                         color='dimgray',
                         alpha=1,
                         ax=ax_hisg),
        mpf.make_addplot(macd, color='fuchsia', ax=ax_macd),
        mpf.make_addplot(signal, color='b', ax=ax_sign),
    ]

    for ax in axes:
        ax.clear()
    mpf.plot(data, type='candle', addplot=apds, ax=ax_main, volume=ax_volu)
Esempio n. 4
0
def draw_MACD(table):
    global panelCount
    panelCount = panelCount + 1
    macd, macdsignal, macdhist = talib.MACD(table['Close'])
    PICS.append(mpf.make_addplot(macd,panel = panelCount,ylabel = 'MACD',color='blue'))
    PICS.append(mpf.make_addplot(macdsignal,panel = panelCount,color='red'))
    PICS.append(mpf.make_addplot(macdhist,type = 'bar',panel = panelCount))
def generate_macd_reports(ticker_df, ticker_symbol, reports_path):
    output_dir = f'{reports_path}{ticker_symbol.lower()}/'
    if not os.path.exists(os.path.dirname(output_dir)):
        try:
            os.makedirs(os.path.dirname(output_dir))
        except OSError as exc:  # Guard against race condition
            if exc.errno != errno.EEXIST:
                raise

    macd_obj = ta.trend.MACD(close=ticker_df['Close'])

    macd = macd_obj.macd()
    macd_signal = macd_obj.macd_signal()

    macd_plot = mpl.make_addplot(macd, panel='lower')
    macd_signal_plot = mpl.make_addplot(macd_signal, panel='lower')

    mpl.plot(ticker_df,
             type='candle',
             volume=True,
             style='yahoo',
             addplot=[macd_plot, macd_signal_plot],
             savefig=f'{output_dir}Daily_MACD.svg',
             figscale=1.2,
             closefig=True)
Esempio n. 6
0
def control_test():
    x = get_candles("NOG", 10000, 0)
    x_ = to_dataframe(x)
    rsi_ = rsi(x)
    control, generated = get_control(x)

    # NOG first three samples
    session = [0] * len(x)
    for i in range(14,68):
        session[i] = 50
    session[14] = 25
    session[60] = 75
    for i in range(250,312):
        session[i] = 50
    session[255] = 25
    session[301] = 75
    for i in range(373,404):
        session[i] = 50
    session[376] = 25
    session[398] = 75

    apds = [
        make_addplot(rsi_, panel = 1),
        make_addplot([70] * len(x), panel = 1),
        make_addplot([30] * len(x), panel = 1),
        make_addplot(session, panel = 2)
        #make_addplot([ r["close"] for r in generated ], panel = 2),
        #make_addplot(control, panel = 3),
        #make_addplot([70] * len(x), panel = 3),
        #make_addplot([30] * len(x), panel = 3)
    ]

    plot(x_, type = "candle", addplot = apds)
Esempio n. 7
0
def test_addplot08(bolldata):
    df = bolldata

    fname = base+'08.png'
    tname = os.path.join(tdir,fname)
    rname = os.path.join(refd,fname)

    tcdf = df[['LowerB','UpperB']]  # DataFrame with two columns

    low_signal  = percentB_belowzero(df['PercentB'], df['Close']) 
    high_signal = percentB_aboveone(df['PercentB'], df['Close'])

    import math
    new_low_signal = [x*20.*math.sin(x) for x in low_signal]

    apds = [ mpf.make_addplot(tcdf,linestyle='dashdot'),
             mpf.make_addplot(new_low_signal,scatter=True,markersize=200,marker='^'),
             mpf.make_addplot(high_signal,scatter=True,markersize=200,marker='v'),
             mpf.make_addplot((df['PercentB']),panel='lower',color='g',linestyle='dotted')
           ]

    mpf.plot(df,addplot=apds,figscale=1.5,volume=True,
             mav=(15,30,45),style='default',savefig=tname)   

    tsize = os.path.getsize(tname)
    print(glob.glob(tname),'[',tsize,'bytes',']')

    rsize = os.path.getsize(rname)
    print(glob.glob(rname),'[',rsize,'bytes',']')

    result = compare_images(rname,tname,tol=IMGCOMP_TOLERANCE)
    if result is not None:
       print('result=',result)
    assert result is None
Esempio n. 8
0
def draw_ADLs(table):
    global panelCount
    panelCount = panelCount + 1
    table_fast = tools.smooth_Data(table,10)
    table_slow = tools.smooth_Data(table,30)
    PICS.append(mpf.make_addplot(table_fast,panel = panelCount,color='red'))
    PICS.append(mpf.make_addplot(table_slow,panel = panelCount,color='blue',ylabel = "ADLs"))
Esempio n. 9
0
def show_stock_chart2(df, title='', figpath=None):

    # 日付で昇順ソース
    df_sort = df.sort_index()

    # MACDを追加
    df_macd = add_macd(df_sort)
    print('==========')
    print(df_macd)

    # MACDとシグナルのプロット作成
    add_plot = [
        mpf.make_addplot(df_macd['MACD'],
                         color='m',
                         panel=1,
                         secondary_y=False),
        mpf.make_addplot(df_macd['Signal'],
                         color='c',
                         panel=1,
                         secondary_y=False),
        mpf.make_addplot(df_macd['Hist'],
                         type='bar',
                         color='g',
                         panel=1,
                         secondary_y=True)
    ]

    # ローソク足チャートを表示
    mpf.plot(df_sort,
             type='candle',
             mav=(5, 25, 75),
             volume=True,
             addplot=add_plot,
             volume_panel=2,
             savefig=figpath)
def generate_on_balance_volume_reports(ticker_df, ticker_symbol, reports_path):
    output_dir = f'{reports_path}{ticker_symbol.lower()}/'
    if not os.path.exists(os.path.dirname(output_dir)):
        try:
            os.makedirs(os.path.dirname(output_dir))
        except OSError as exc:  # Guard against race condition
            if exc.errno != errno.EEXIST:
                raise

    on_balance_volume = ta.volume.OnBalanceVolumeIndicator(
        close=ticker_df['Close'],
        volume=ticker_df['Volume']).on_balance_volume()

    obv_sma = ta.trend.SMAIndicator(close=on_balance_volume,
                                    n=20).sma_indicator()

    obv_plot = mpl.make_addplot(on_balance_volume)
    obv_sma_plot = mpl.make_addplot(obv_sma)

    mpl.plot(ticker_df,
             type='candle',
             volume=True,
             style='yahoo',
             addplot=[obv_plot, obv_sma_plot],
             savefig=f'{output_dir}On_Balance_Volume.svg',
             figscale=1.2,
             closefig=True)
def plotResults(data, addings, adding_types, addings_colors, sizes,
                within_data, legend, names):
    if len(addings) == len(adding_types) == len(addings_colors):
        apdict = []
        #if within_data is True, then the addings will be a list of column names to add to the plot
        if within_data:
            for i in range(len(addings)):
                apdict.append(
                    mpf.make_addplot(data[addings[i]],
                                     type=adding_types[i],
                                     color=addings_colors[i],
                                     markersize=sizes[i]))
        #if within_data is False, then the addings will be a list of dataframes to add to the plot
        else:
            for i in range(len(addings)):
                apdict.append(
                    mpf.make_addplot(addings[i],
                                     type=adding_types[i],
                                     color=addings_colors[i],
                                     markersize=sizes[i]))

        if legend:
            fig, ax = plt.subplots(1)
            fig, ax = mpf.plot(data,
                               type='candle',
                               block=False,
                               addplot=apdict,
                               returnfig=True)
            ax.legend(names)
            fig.show()
            #return ax
        else:
            mpf.plot(data, type='candle', block=False, addplot=apdict)
Esempio n. 12
0
def plot_stock_sig_back(pddatas, datal, sigs):
    "datas标准数据,sigs(trade_sig,up_buy,up_sell,down_buy,down_sell)"
    # https://blog.csdn.net/weixin_42524945/article/details/112187912
    # https://blog.csdn.net/xingbuxing_py/article/details/109379080
    # 1. 添加额外线
    add_plot = mpf.make_addplot(datal[['High', 'MidValue', 'Low']])
    mpf.plot(pddatas, type='candle', addplot=add_plot)
    # 2. 添加额外点
    a_list = datal.High.tolist()
    b_list = datal.Low.tolist()
    c_list = datal.Low.tolist()
    add_plot = [
        mpf.make_addplot(datal['MidValue']),
        mpf.make_addplot(a_list,
                         scatter=True,
                         markersize=100,
                         marker='v',
                         color='g'),
        mpf.make_addplot(b_list,
                         scatter=True,
                         markersize=100,
                         marker='^',
                         color='r'),
        mpf.make_addplot(c_list,
                         scatter=True,
                         markersize=100,
                         marker='o',
                         color='y'),
    ]
    mpf.plot(pddatas, type='candle', addplot=add_plot)
Esempio n. 13
0
    def animate(self, ival):
        if (20 + ival) > len(self.df):
            print('no more data to plot')
            return
        data = self.df.iloc[0:(30 + ival)]
        self.exp12 = data['Close'].ewm(span=12, adjust=False).mean()
        self.exp26 = data['Close'].ewm(span=26, adjust=False).mean()
        self.macd = self.exp12 - self.exp26
        self.signal = self.macd.ewm(span=9, adjust=False).mean()
        self.histogram = self.macd - self.signal
        self.apds = [
            mpf.make_addplot(self.exp12, color='lime', ax=self.ax_emav),
            mpf.make_addplot(self.exp26, color='c', ax=self.ax_emav),
            mpf.make_addplot(self.histogram,
                             type='bar',
                             width=0.7,
                             color='dimgray',
                             alpha=1,
                             ax=self.ax_hisg),
            mpf.make_addplot(self.macd, color='fuchsia', ax=self.ax_macd),
            mpf.make_addplot(self.signal, color='b', ax=self.ax_sign),
        ]

        for ax in self.axes:
            ax.clear()
        mpf.plot(data,
                 type='candle',
                 addplot=self.apds,
                 ax=self.ax_main,
                 volume=self.ax_volu)
Esempio n. 14
0
def plot_j2(pdata, sma9, sma20, lowerbb, upperbb, numofdays, ticker,
            defining_ma):
    sma9dict = mpf.make_addplot(sma9['data'][-numofdays:],
                                color='#c87cff',
                                width=1)
    sma20dict = mpf.make_addplot(sma20['data'][-numofdays:],
                                 color='#f28c06',
                                 width=1)
    lowerbbdict = mpf.make_addplot(lowerbb['data'][-numofdays:],
                                   color='#b90c0c',
                                   width=1)
    upperbbdict = mpf.make_addplot(upperbb['data'][-numofdays:],
                                   color='#b90c0c',
                                   width=1)
    mpf.plot(
        pdata[-numofdays:],
        type='candle',
        style='charles',
        addplot=[sma9dict, sma20dict, lowerbbdict, upperbbdict],
        # figscale=.9,
        tight_layout=False,
        ylabel='',
        savefig=
        f'''/Users/mike/Desktop/ib_insync-MovingAverageChartGen/9-200SMA_{today_date}/{ticker}_{defining_ma}_{today_date}.pdf'''
    )
    chartFilePath = f'''/Users/mike/Desktop/ib_insync-MovingAverageChartGen/9-200SMA_{today_date}/{ticker}_{defining_ma}_{today_date}.pdf'''
    chartFileTitle = f'''{ticker}_{defining_ma}_{today_date}.pdf'''
 def show_adv(self, ftitle="Stock", **kwargs):
     """
     顯示進階K線圖,K線搭配一主圖指標與兩個副圖指標
     使用mplfinance實現之(panel method)
     已定義的作圖參數:
     ti_main = "SMA" / "VWMA"
     ti_sub1 = "KD" / "MACD" / "STD" / "VIX" / "CVOL"
     ti_sub2 = "KD" / "MACD" / "STD" / "VIX" / "CVOL"
     """
     self._setrun(**kwargs)  # 進行參數驗證與指標計算
     dest = Dpath + '\\' + ftitle + ".png"
     mc = mpf.make_marketcolors(up='r', down='g', inherit=True)
     ms = mpf.make_mpf_style(base_mpf_style = "yahoo", \
                             marketcolors = mc, y_on_right = True)
     # 不支援中文字型,圖表文字需為英文
     mfargs = dict(type = "candle", volume = True, \
                   columns = ("O", "H", "L", "C", "V"), \
                   show_nontrading = False, returnfig = True, \
                   figsize = (self.fx, self.fy), \
                   title = ftitle, style = ms, ylabel = "Price", \
                   ylabel_lower = "Volume in shares", \
                   panel_ratios = (1, 1))
     aps = []
     if "ti_main" in kwargs:
         tidf = self.val_main.copy()
         isma = False
         if kwargs["ti_main"] == "SMA" or kwargs["ti_main"] == "VWMA":
             isma = True  # 主圖技術指標為均線類型
         for i in range(0, tidf.shape[1]):
             aps.append(mpf.make_addplot(tidf.iloc[:, i], \
                                         color = MA_Colors[i]))
             if isma:  # 補均線扣抵記號,配色同均線
                 aps.append(mpf.make_addplot(self.sig_main.iloc[:, i], \
                                             type = "scatter", \
                                             markersize = 200, \
                                             marker = '^', \
                                             color = MA_Colors[i]))
     pid = 1  # Panel ID = 0 for candlestick, 1 for volume
     if "ti_sub1" in kwargs:  # pid = 2
         pid += 1
         ap2 = self._setsubti(self.val_sub1, kwargs["ti_sub1"], pid)
         for item in ap2:
             aps.append(item)
     if "ti_sub2" in kwargs:  # pid = 3 (or 2 if ti_sub1 is not assigned)
         pid += 1
         ap3 = self._setsubti(self.val_sub2, kwargs["ti_sub2"], pid)
         for item in ap3:
             aps.append(item)
     if len(aps) > 0:
         if pid == 2:
             mfargs["panel_ratios"] = (2, 1, 1)
         elif pid == 3:
             mfargs["panel_ratios"] = (3, 1, 1, 1)
         fig, axes = mpf.plot(self.df, addplot=aps, **mfargs)
     else:
         fig, axes = mpf.plot(self.df, **mfargs)
     mpf.show()
     fig.savefig(dest)
     return None
Esempio n. 16
0
async def candle(message: types.Message, regexp_command):
    chat_id = message.chat.id
    try:
        coin = regexp_command.group(1)
        trades = get_ohcl_trades(coin, 180)
        trades = trades[-60:]
        df = pd.DataFrame(
            trades, columns='time open high low close volume amount'.split())
        df['time'] = pd.DatetimeIndex(df['time'] * 10**9)
        df.set_index('time', inplace=True)

        df['MA20'] = df['close'].rolling(window=20).mean()
        df['20dSTD'] = df['close'].rolling(window=20).std()

        df['Upper'] = df['MA20'] + (df['20dSTD'] * 2)
        df['Lower'] = df['MA20'] - (df['20dSTD'] * 2)

        rsi_df = get_rsi_df(df)
        df = df.tail(30)
        rsi_df = rsi_df.tail(30)

        apd = [
            mpf.make_addplot(df['Lower'], color='#EC407A', width=0.9),
            mpf.make_addplot(df['Upper'], color='#42A5F5', width=0.9),
            mpf.make_addplot(df['MA20'], color='#FFEB3B', width=0.9)
        ]

        if rsi_df is not None:
            apd.append(
                mpf.make_addplot(rsi_df,
                                 color='#FFFFFF',
                                 panel=1,
                                 ylabel='RSI',
                                 ylim=[0, 100]))
        kwargs = dict(type='candle',
                      ylabel=coin.upper() + ' Price in $',
                      volume=True,
                      figratio=(3, 2),
                      figscale=1.5,
                      addplot=apd)
        mpf.plot(df, **kwargs, style='nightclouds')
        mc = mpf.make_marketcolors(up='#69F0AE', down='#FF5252', inherit=True)
        s = mpf.make_mpf_style(base_mpf_style='nightclouds',
                               facecolor='#121212',
                               edgecolor="#131313",
                               gridcolor="#232323",
                               marketcolors=mc)
        mpf.plot(df,
                 **kwargs,
                 style=s,
                 scale_width_adjustment=dict(volume=0.55, candle=0.8),
                 savefig=coin + '-mplfiance.png')
        await bot.send_photo(chat_id=chat_id,
                             photo=InputFile(coin + '-mplfiance.png'))
    except Exception as e:
        logging.error("ERROR Making chart:" + str(e))
        await bot.send_message(chat_id=chat_id,
                               text="Failed to create chart",
                               parse_mode="HTML")
Esempio n. 17
0
def draw_KD(table,stockInfo):#table = 表 stockInfo = 股票資訊結構
    table['k'],table['d'] = talib.STOCH(table['High'],table['Low'],table['Close'])
    table['k'].fillna(value=0,inplace = True)
    table['d'].fillna(value=0,inplace = True)
    global panelCount
    panelCount = panelCount + 1
    PICS.append(mpf.make_addplot(table['k'],panel = panelCount,ylabel = "KD",color='red'))
    PICS.append(mpf.make_addplot(table['d'],panel = panelCount,color='blue'))
Esempio n. 18
0
    def __init__(self, parent=None, width=5, height=5, dpi=100):
        idf = pd.read_csv('datas/SPY_20110701_20120630_Bollinger.csv',
                          index_col=0,
                          parse_dates=True)
        idf.shape
        idf.head(3)
        idf.tail(3)
        self.df = idf.loc['2011-07-01':'2011-12-30', :]
        self.df = self.df.iloc[0:30]
        self.exp12 = self.df['Close'].ewm(span=12, adjust=False).mean()
        self.exp26 = self.df['Close'].ewm(span=26, adjust=False).mean()
        self.macd = self.exp12 - self.exp26
        self.signal = self.macd.ewm(span=9, adjust=False).mean()
        self.histogram = self.macd - self.signal
        self.apds = [
            mpf.make_addplot(self.exp12, color='lime'),
            mpf.make_addplot(self.exp26, color='c'),
            mpf.make_addplot(self.histogram,
                             type='bar',
                             width=0.7,
                             panel=1,
                             color='dimgray',
                             alpha=1,
                             secondary_y=False),
            mpf.make_addplot(self.macd,
                             panel=1,
                             color='fuchsia',
                             secondary_y=True),
            mpf.make_addplot(self.signal, panel=1, color='b',
                             secondary_y=True),
        ]

        s = mpf.make_mpf_style(base_mpf_style='starsandstripes',
                               rc={'figure.facecolor': 'lightgray'})
        self.fig, self.axes = mpf.plot(self.df,
                                       type='candle',
                                       addplot=self.apds,
                                       figscale=1.5,
                                       figratio=(7, 5),
                                       title='\n\nMACD',
                                       style=s,
                                       volume=True,
                                       volume_panel=2,
                                       panel_ratios=(6, 3, 2),
                                       returnfig=True)
        FigureCanvas.__init__(self, self.fig)
        self.setParent(parent)

        self.ax_main = self.axes[0]
        self.ax_emav = self.ax_main
        self.ax_hisg = self.axes[2]
        self.ax_macd = self.axes[3]
        self.ax_sign = self.ax_macd
        self.ax_volu = self.axes[4]
        self.df = idf.loc['2011-07-01':'2011-12-30', :]
        self.ani = animation.FuncAnimation(self.fig,
                                           self.animate,
                                           interval=250)
Esempio n. 19
0
def ChartOrder_MA(KBar,TR):
    # 將K線轉為DataFrame
    Kbar_df=KbarToDf(KBar)
    # 定義指標副圖
    addp=[]
    addp.append(mpf.make_addplot(Kbar_df['MA_long'],color='red'))
    addp.append(mpf.make_addplot(Kbar_df['MA_short'],color='yellow'))
    # 繪製指標、下單圖
    ChartOrder(KBar,TR,addp)
Esempio n. 20
0
def plot_image(df_):
    my_color = mpf.make_marketcolors(up="red", down="green", edge="inherit", volume="inherit")
    my_style = mpf.make_mpf_style(marketcolors=my_color)

    add_plot = [mpf.make_addplot(df_[['ma_short', 'ma_long']]),
                mpf.make_addplot(df_['signal_long'], scatter=True, marker="^", color="r"),
                mpf.make_addplot(df_['signal_short'], scatter=True, marker="v", color="g")]
    mpf.plot(df_, type="line", ylabel="price(usdt)", style=my_style, volume=True, ylabel_lower="vol",
             addplot=add_plot)
Esempio n. 21
0
def plot_signal(df, signal, position=False, lines=False):
    name = (df.reset_index())['symbol'].iloc[0]
    buys = df[df[signal] > 0].index
    sells = df[df[signal] < 0].index
    fechas = []
    colores = []
    Trades = []
    for trade in buys:
        fechas.append(trade)
        colores.append('g')
    for trade in sells:
        fechas.append(trade)
        colores.append('r')
    df_trades = pd.DataFrame({'colors': colores}, index=fechas)
    df = df.join(df_trades)
    df['buy_price'] = np.where(df['colors'] == 'g', df['Close'], math.nan)
    df['sell_price'] = np.where(df['colors'] == 'r', df['Close'], math.nan)
    if position:
        lines = True
    if lines:
        marker = 0.1
        if position:
            width = 0.3
            alpha = 0.1
        else:
            width = 0.5
            alpha = 0.7
    else:
        width = 0.01
        alpha = 0.01
        marker = 70
    if df['buy_price'].notnull().sum().sum() > 0:
        trades_buy = mpf.make_addplot(df['buy_price'],
                                      type='scatter',
                                      markersize=marker,
                                      marker='^',
                                      color='g')
        Trades.append(trades_buy)
    if df['sell_price'].notnull().sum().sum() > 0:
        trades_sell = mpf.make_addplot(df['sell_price'],
                                       type='scatter',
                                       markersize=marker,
                                       marker='v',
                                       color='r')
        Trades.append(trades_sell)
    mpf.plot(df,
             type='candle',
             style='charles',
             figratio=(16, 8),
             addplot=Trades,
             vlines=dict(vlines=fechas,
                         colors=colores,
                         linewidths=width,
                         alpha=alpha),
             title=name + ' daily chart' + ' signal:' + signal,
             ylabel='price')
Esempio n. 22
0
def send_monthly_data():
    ''' Send the long term data as a nice chart :s '''

    econ_data = pd.read_sql(f'''SELECT * FROM forecast''', ECON_CON) 
    econ_data.datetime = pd.to_datetime(econ_data.datetime)
    econ_data = econ_data.set_index('datetime', drop=True).replace('', np.nan)
    
    # I need to get the sum of the most recent values from each event. I can
    # filter for where long_term.notna(), but my rolling window is unknown 
    # because not all currencies have the same number of long term events.
    
    data = {}
    for ccy in econ_data.ccy.unique():
        temp = econ_data[
            (econ_data.ccy == ccy) 
            & 
            (econ_data.long_term.notna())
        ]

        # Get the window sized based on number of unique values found
        roll_window = len(temp.ccy_event.unique())
        final_data = temp.long_term.rolling(roll_window).sum() / roll_window

        # The data needs to get aligned to whatever timeframe of ohlc it will be plotted on
        # Since there is sometimes multiple releases on a given day, group by day
        final_data.index = final_data.index.date
        data[ccy] = final_data.groupby([final_data.index]).sum()
        # data[ccy].index = pd.to_datetime(data[ccy].index)
        # data[ccy] = data[ccy].resample('1W')
        # my daily candles from IC Markets have the hours at 16:00 so add that lest you want funkydata

    # These long term data items were really only applicable to the currencies
    # with lots of unique events (E,U,G). 
    timeframe = 'D1'
    symbols = ['EURUSD', 'GBPUSD', 'EURGBP', 'USDCHF', 'NZDUSD', 'USDCAD', 'USDJPY']
    for symbol in symbols:
        df = mt5_ohlc_request(symbol, timeframe, num_candles=270)
        df.index = df.index.date
        df['long_term1'] = data[symbol[:3]]
        df['long_term2'] = data[symbol[3:]]
        df.long_term1 = df.long_term1.fillna(method='ffill')
        df.long_term2 = df.long_term2.fillna(method='ffill')
        df.index = pd.to_datetime(df.index)

        plots = []
        plots.append(mpf.make_addplot(df.long_term1, color='r', panel=1, width=2, secondary_y=True))
        plots.append(mpf.make_addplot(df.long_term2, color='b', panel=1, width=1, secondary_y=True))
        mpf.plot(df, type='candle', 
                tight_layout=True, 
                addplot=plots,
                show_nontrading=False, 
                volume=True,
                title=f'{symbol} {timeframe}',
                # style='classic',   ## black n white
                savefig=f'{symbol}_longterm.png'
                )
Esempio n. 23
0
    def showCompare(self, bars: [], code: str):
        from earnmi.data.MarketImpl import MarketImpl
        market = MarketImpl()
        market.addNotice(code)
        today: datetime = bars[-1].datetime
        market.setToday(today + timedelta(days=1))
        start: datetime = bars[0].datetime
        baseBars = market.getHistory().getKbarFrom(
            code, datetime(start.year, start.month, start.day))

        #baseBar = mainBar
        ### 初始化columns
        columns = ['Open', 'High', 'Low', 'Close', "Volume", "Close2"]
        data = []
        index = []
        bars1 = baseBars
        bars2 = bars
        size1 = len(bars1)
        size2 = len(bars2)
        rate = bars1[0].close_price / bars2[0].close_price
        bar_pre_2 = bars2[0]
        i2 = 0
        for i1 in range(size1):
            bar1 = bars1[i1]
            index.append(bar1.datetime)
            list = [
                bar1.open_price, bar1.high_price, bar1.low_price,
                bar1.close_price, bar1.volume
            ]

            if i2 < size2:
                bar2 = bars2[i2]
                if utils.is_same_day(bar1.datetime, bar2.datetime):
                    list.append(bar2.close_price * rate)
                    bar_pre_2 = bar2
                    i2 = i2 + 1
                else:
                    ##bar2缺少今天数据。
                    list.append(bar_pre_2.close_price * rate)
                ##保证i2要大于大
                while (i2 < size2):
                    bar2 = bars2[i2]
                    days = (bar2.datetime - bar1.datetime).days
                    if days > 0:
                        break
                    i2 = i2 + 1
            else:
                list.append(bar_pre_2.close_price * rate)
            data.append(list)

        trades = pd.DataFrame(data, index=index, columns=columns)
        apds = []
        apds.append(mpf.make_addplot(trades['Close'], color='gray'))
        apds.append(mpf.make_addplot(trades['Close2'], color='r'))
        mpf.plot(trades, type='line', figscale=1.3, addplot=apds)
        pass
Esempio n. 24
0
def ChartOrder_BBANDS(KBar,TR):
    # 將K線轉為DataFrame
    Kbar_df=KbarToDf(KBar)
    # 將副圖繪製出來
    addp=[]
    addp.append(mpf.make_addplot(Kbar_df['Upper'],color='yellow'))
    addp.append(mpf.make_addplot(Kbar_df['Middle'],color='grey'))
    addp.append(mpf.make_addplot(Kbar_df['Lower'],color='yellow'))
    # 開始繪圖
    ChartOrder(KBar,TR,addp,True)
Esempio n. 25
0
def ChartOrder_RSI_2(KBar,TR):
    # 將K線轉為DataFrame
    Kbar_df=KbarToDf(KBar)
    # 將副圖繪製出來
    addp=[]
    addp.append(mpf.make_addplot(Kbar_df['RSI'],panel='lower',color='black',secondary_y=False))
    addp.append(mpf.make_addplot(Kbar_df['Ceil'],panel='lower',color='red',secondary_y=False))
    addp.append(mpf.make_addplot(Kbar_df['Floor'],panel='lower',color='red',secondary_y=False))
    # 開始繪圖
    ChartOrder(KBar,TR,addp,False)
Esempio n. 26
0
def ChartOrder_RSI_1(KBar,TR):
    # 將K線轉為DataFrame
    Kbar_df=KbarToDf(KBar)
    # 將副圖繪製出來
    addp=[]
    addp.append(mpf.make_addplot(Kbar_df['RSI_long'],panel='lower',color='red',secondary_y=False))
    addp.append(mpf.make_addplot(Kbar_df['RSI_short'],panel='lower',color='green',secondary_y=False))
    addp.append(mpf.make_addplot(Kbar_df['Middle'],panel='lower',color='black',secondary_y=False))
    # 開始繪圖
    ChartOrder(KBar,TR,addp,False)
def create_addplots(df, mpl):
    """
    """

    adps, hlines = [], {
        'hlines': [],
        'colors': [],
        'linestyle': '--',
        'linewidths': 0.75
    }

    # Add technical feature data (indicator values, etc).
    for col in list(df):
        if (col != "Open" and col != "High" and col != "Low" and col != "Close"
                and col != "Volume"):
            adps.append(mpl.make_addplot(df[col]))

    # Add entry marker
    color = 'limegreen' if trade['direction'] == "LONG" else 'crimson'
    adps.append(
        mpl.make_addplot(entry_marker,
                         type='scatter',
                         markersize=200,
                         marker='.',
                         color=color))

    # Plotting Stop and TP levels cause incorrect scaling when stop/TP are
    # far away from entry. Fix later. Not urgent or required

    # # Add stop and TP levels.
    # o_ids = [i for i in trade['orders'].keys()]
    # for o_id in o_ids:
    #     if trade['orders'][o_id]['metatype'] == "STOP":
    #         hlines['hlines'].append(trade['orders'][o_id]['price'])
    #         hlines['colors'].append('crimson')

    #     elif trade['orders'][o_id]['metatype'] == "TAKE_PROFIT":
    #         hlines['hlines'].append(trade['orders'][o_id]['price'])
    #         hlines['colors'].append('limegreen')

    #     elif trade['orders'][o_id]['metatype'] == "FINAL_TAKE_PROFIT":
    #         hlines['hlines'].append(trade['orders'][o_id]['price'])
    #         hlines['colors'].append('limegreen')

    # # Add an invisible hline to re-scale, in case stop/TP is far away.
    # difference = max([abs(trade['entry_price'] - i) for i in hlines['hlines']])
    # if max(hlines['hlines']) > difference:
    #     hlines['hlines'].append(trade['entry_price'] - difference)
    #     hlines['colors'].append('white')
    # elif max(hlines['hlines']) < differe7nce:
    #     hlines['hlines'].append(trade['entry_price'] + difference)
    #     hlines['colors'].append('white')

    return adps, hlines
Esempio n. 28
0
def ChartKBar_MA(KBar,longPeriod=20,shortPeriod=5):
    # 計算移動平均線(長短線)
    KBar['MA_long']=SMA(KBar,timeperiod=longPeriod)
    KBar['MA_short']=SMA(KBar,timeperiod=shortPeriod)
    # 將K線轉為DataFrame
    Kbar_df=KbarToDf(KBar)
    # 將副圖繪製出來
    addp=[]
    addp.append(mpf.make_addplot(Kbar_df['MA_long'],color='red'))
    addp.append(mpf.make_addplot(Kbar_df['MA_short'],color='yellow'))
    # 開始繪圖
    ChartKBar(KBar,addp,True)
Esempio n. 29
0
def ChartKBar_BBANDS(KBar,BBANDSPeriod):
    # 計算布琳通道
    KBar['Upper'],KBar['Middle'],KBar['Lower']=BBANDS(KBar,timeperiod=BBANDSPeriod)
    # 將K線轉為DataFrame
    Kbar_df=KbarToDf(KBar)
    # 將副圖繪製出來
    addp=[]
    addp.append(mpf.make_addplot(Kbar_df['Upper'],color='yellow'))
    addp.append(mpf.make_addplot(Kbar_df['Middle'],color='grey'))
    addp.append(mpf.make_addplot(Kbar_df['Lower'],color='yellow'))
    # 開始繪圖
    ChartKBar(KBar,addp,True)
Esempio n. 30
0
    def create_summary(self):
        """Creates a csv file and image showing all positions taken."""

        # csv file
        summary = pd.DataFrame.from_dict(self.equity)
        summary = summary.set_index('datestamp')
        summary['Buy Orders'] = np.nan
        summary['Sell Orders'] = np.nan

        for trade in self.all_positions:
            open_time = dt.datetime.strptime(trade['Open Time'],
                                             '%d-%m-%Y %H:%M:%S')
            close_time = dt.datetime.strptime(trade['Close Time'],
                                              '%d-%m-%Y %H:%M:%S')

            if trade['Direction'] == 'BUY':
                summary.loc[open_time, 'Buy Orders'] = trade['Open Price']
                summary.loc[close_time, 'Sell Orders'] = trade['Close Price']
            else:
                summary.loc[open_time, 'Sell Orders'] = trade['Open Price']
                summary.loc[close_time, 'Buy Orders'] = trade['Close Price']

        curr_dir = os.path.dirname(os.path.realpath(__file__))
        save_path = os.path.join(curr_dir, 'summary')
        summary.to_csv(f'{save_path}/summary.csv')

        # image
        data = self.data.symbol_data

        plots = [
            mpf.make_addplot(summary['Buy Orders'],
                             type='scatter',
                             color='green',
                             marker='^',
                             markersize=40),
            mpf.make_addplot(summary['Sell Orders'],
                             type='scatter',
                             color='red',
                             marker='v',
                             markersize=40),
            mpf.make_addplot(summary['balance'], panel=1, color='fuchsia')
        ]

        mpf.plot(data,
                 type='candlestick',
                 figratio=(18, 10),
                 panel_ratios=(8, 2),
                 addplot=plots,
                 style='sas',
                 savefig=f'{save_path}/summary.png',
                 tight_layout=True)