Esempio n. 1
0
def gold_miner_mold():
    gm = GoldMiner()
    gm.data = pickle_load("cleaned_data")[:20]
    print(len(gm.data))
    print(len(gm.data[0]))
    start = time.time()
    gm.mold()
    print(len(gm.data[0]))
    print("elapse {0} seconds".format(time.time() - start))
Esempio n. 2
0
def cast_hound():
    h = Hound()
    data = smart_decode(pickle_load("train_data"), cast=True)[:10]
    h.x_predict, h.y_predict = split_x_y(data)
    h.load_model()
    h.predict()
    h.print_info()
    data = list(map(lambda x, y: x + y, [line[:4] for line in data], h.prediction.astype(unicode).tolist()))
    for line in data:
        print(len("\t".join(line)))
Esempio n. 3
0
def gold_miner_hive_test():
    gm = GoldMiner()
    gm.data = smart_decode(pickle_load("raw_data"), cast=True)
    gm.pan()
    print(len(gm.data))
    gm.smelt()
Esempio n. 4
0
def train_hound():
    h = Hound()
    h.x_train, h.y_train = split_x_y(smart_decode(pickle_load("train_data"), cast=True))
    h.train()
    h.save_model()
    h.print_info()
Esempio n. 5
0
def transform():
    pickle_dump("id_content",
                {line[0]: line[1]
                 for line in pickle_load("raw")})