def plot_cno_saline(): data: pd.DataFrame = pd.read_csv( analysis_folder.joinpath("decoder_cno.csv"), usecols=[1, 2, 3], index_col=[2, 1]).sort_index() # type: ignore group_strs = ('saline', 'cno') paired_data = [data.loc[treat, 'mutual_info'] for treat in group_strs] p_value = wilcoxon(*paired_data).pvalue res = ["median: "] + str(data.groupby("treat").median()).split('\n')[2:] print_stats("saline vs. cno in Gq", res + [f"paired wilcox: p={p_value}"]) with Figure(fig_folder.joinpath("decoder-pair-cno.svg"), figsize=(6, 9)) as axes: boxplots = plots.boxplot(axes[0], paired_data, whis=(10., 90.), zorder=1, showfliers=False, colors=colors[2:4], widths=0.65) plots.dots(axes[0], paired_data, zorder=3, s=24) axes[0].set_xticklabels(["Gq Saline", "Gq CNO"]) plots.annotate_boxplot(axes[0], boxplots, 24, 1.2, [((0, 1), p_value)]) [ axes[0].plot([1, 2], x, color='gray') for x in np.array(paired_data).T ]
def draw_stacked_bar(cluster_file: ClusterFile): days = ('5', '10', '13', '14') res = [[len(cluster_file[day].get(str(cluster_id), [])) for cluster_id in range(1, 15)] for day in days] with Figure() as (ax,): stacked_bar(ax, res, COLORS) ax.set_xticks(range(len(days)), days)
def draw_noise(data_files: Dict[int, File], neuron_id: int, params: MotionParams): last_day = max(data_files.keys()) lever = load_mat(data_files[last_day]['response']) neuron_rate = data_files[last_day].attrs['frame_rate'] neurons = common_axis([DataFrame.load(x['spike']) for x in data_files.values()]) good, bad, anti = classify_cells(motion_corr( lever, neurons[-1], neuron_rate, 16000, params), 0.001) amp = list() corrs: Dict[str, List[List[float]]] = {'good': [], 'unrelated': [], 'between': []} for (day_id, data_file), neuron in zip(data_files.items(), neurons): if day_id == last_day: continue lever = load_mat(data_file['response']) corrs['good'].append(_take_triu(noise_autocorrelation(lever, neuron[good], neuron_rate))) corrs['unrelated'].append(_take_triu(noise_autocorrelation(lever, neuron[bad | anti], neuron_rate))) corrs['between'].append(_take_triu(noise_correlation(lever, neuron[good], neuron[bad | anti], neuron_rate))) lever.center_on("motion", **params) neuron_trials = fold_by(neuron, lever, neuron_rate, True) amp.append(neuron_trials.values[np.argwhere(neuron.axes[0] == neuron_id)[0, 0], :, :].max(axis=1)) with Figure(join(project_folder, 'report', 'img', f'noise_corr_{neuron_id}.svg')) as (ax,): day_ids = [x for x in data_files.keys() if x != last_day] for idx, (group_str, group) in enumerate(corrs.items()): ax.errorbar(day_ids, [np.mean(x) for x in group], yerr=[_sem(x) for x in group], color=COLORS[idx], label=group_str) ax2 = ax.twinx() ax2.errorbar(day_ids, [np.mean(x) for x in amp], [_sem(x) for x in amp], color=COLORS[-1]) ax.set_title(str(neuron_id)) ax.legend()
def draw_hierarchy(data_files: Dict[int, File]): neurons = common_axis([DataFrame.load(x['spike']) for x in files.values()]) for (day_id, data_file), neuron in zip(files.items(), neurons): lever = load_mat(data_file['response']) corr_mat = noise_autocorrelation(lever, neuron, data_file.attrs['frame_rate']) with Figure() as (ax,): ax.set_title(f"day-{day_id:02d}") fancy_dendrogram(linkage(corr_mat, 'average'), ax=ax)
def draw_classify_neurons(data_file: File, neuron_ids: Optional[np.ndarray] = None): lever = load_mat(data_file['response']) neuron = DataFrame.load(data_file['spike']) if neuron_ids is not None: neuron = neuron[search_ar(neuron_ids, neuron.axes[0]), :] neuron_rate = data_file.attrs['frame_rate'] corr = motion_corr(lever, neuron, neuron_rate, 16000, motion_params) good, bad, anti = [corr[x, 0] for x in classify_cells(corr, 0.001)] with Figure(join(img_folder, "good_unrelated_cmp.svg"), (4, 6)) as ax: ax[0].bar((0, 1), [good.mean(), np.r_[bad, anti].mean()], yerr=[_sem(good), _sem(np.r_[bad, anti])])
def main(): trial_neurons = get_result([x.name for x in mice][0:1], [res_trial_neuron], 'trial-neuron-2s-run') values = trial_neurons[0][0].values with Figure(fig_folder.joinpath("classifier", "example-neurons.svg"), show=True) as axes: for id_neuron, neuron in enumerate(values[:20, 0:4, :]): for id_trial, trial in enumerate(neuron): axes[0].plot(range(id_trial * 11, id_trial * 11 + 10), trial / trial.max() * 5 + id_neuron * 6, color='red')
def draw_neuron_corr(data_files: Dict[int, File], params: MotionParams, fov_id: str = None): neurons = common_axis([DataFrame.load(x['spike']) for x in data_files.values()]) last_day = max(data_files.keys()) lever = load_mat(data_files[last_day]['response']) neuron_rate = data_files[last_day].attrs['frame_rate'] good, bad, anti = classify_cells(motion_corr( lever, neurons[-1], neuron_rate, 16000, params), 0.001) result_list = list() for (day, data_file), neuron in zip(data_files.items(), neurons): lever.center_on('motion') # type: ignore motion_neurons = fold_by(neuron, lever, neuron_rate, True) result_list.append([reliability(motion_neuron) for motion_neuron in motion_neurons.values]) result = np.array(result_list) with Figure(join(img_folder, ("neuron_corr.svg" if fov_id is None else f"{fov_id}.svg"))) as ax: ax[0].plot(list(data_files.keys()), result[:, good])
def draw_network_graph(data_files: Dict[int, File], params: MotionParams, threshold: int = 16000): """Draw neuron functional connection for each session, with neurons colored by the last session. Args: data_files: {day_id: int, data_file: File} params: classify_cells need ["quiet_var", "window_size", "event_thres", "pre_time"] threshold: threshold for motion_corr, single linked cluster distance """ last_day = data_files[max(data_files.keys())] neurons = common_axis([DataFrame.load(x['spike']) for x in data_files.values()]) neuron_rate = last_day.attrs['frame_rate'] final_corr_mat = noise_autocorrelation(load_mat(last_day['response']), neurons[-1], neuron_rate) categories = classify_cells(motion_corr(last_day, neurons[-1], neuron_rate, threshold, params), 0.001) layout = corr_graph.get_layout(final_corr_mat, neurons[-1].axes[0]) for (day_id, data_file), neuron in zip(data_files.items(), neurons): corr_mat = noise_autocorrelation(load_mat(data_file['response']), neuron, neuron_rate) with Figure(join(img_folder, f"network-day-{day_id:02d}.svg")) as ax: corr_graph.corr_plot(ax[0], corr_mat, categories, neuron.axes[0], layout=layout) print('done')