Esempio n. 1
0
def Add(a, b):
    return mp.fadd(a, b, exact=True)
Esempio n. 2
0
def Add(a, b):
    return mp.fadd(a, b, exact=True)
def dipole(r, theta, charge, a):
    '''
    Purpose      : To calculate Electric Potential due to Dipole considering very small values

    Formula Used :

            (q*const_k)*(1/r_1 - 1/r_2)

                   where,
                        r_1     = distance between negative charge and point of observation
                                = (r^2 + a^2 - 2*a*Cos(theta))**0.5
                        r_2     = distance between positive charge and point of observation
                                = (r^2 + a^2 + 2*a*Cos(theta))**0.5
                        const_k = 4*pi*epsilon_not
                                = 8.9875518 x 10^9

    Parameters   :
                   a) r      - distance between center of the dipole and point of observation
                   b) theta  - Angle between positive charge and point of observation
                   c) charge - either charge irrespective of sign
                   d) a      - distance between either charge and center of dipole

    Return: returns exact value of electric field calculated
    '''

    # Editing value of r as per the unit
    if r[1].lower() in ('meters', 'm'):
        r = r[0]
    elif r[1].lower() in ('centimeters', 'cm'):
        r = mp.fmul(r[0], 10**(-2))
    elif r[1].lower() in ('millimeters', 'mm'):
        r = mp.fmul(r[0], 10**(-3))
    elif r[1].lower() in ('angstroms', 'a', 'A'):
        r = mp.fmul(r[0], 10**(-10))

    # Editing value of a as per the unit
    if a[1].lower() in ('meters', 'm'):
        a = a[0]
    elif a[1].lower() in ('centimeters', 'cm'):
        a = mp.fmul(a[0], 10**(-2))
    elif a[1].lower() in ('millimeters', 'mm'):
        a = mp.fmul(a[0], 10**(-3))
    elif a[1].lower() in ('angstroms', 'a', 'A'):
        a = mp.fmul(a[0], 10**(-10))

    # Calculating Value of Cos(theta)
    if theta[1].lower() == 'radians':
        cos_theta = round(mp.cos(theta[0]), 5)
    elif theta[1].lower() == 'degrees':
        cos_theta = round(mp.cos(mp.radians(theta[0])), 5)

    # Editing Value of charge as per the unit
    if charge[1] in ('Coulomb', 'C'):
        charge = charge[0]
    elif charge[1] in ('microCoulomb', 'uC'):
        charge = mp.fmul(charge[0], 10**(-6))
    elif charge[1] in ('milliCoulomb', 'mC'):
        charge = mp.fmul(charge[0], 10**(-3))
    elif charge[1] in ('electronCharge', 'eC'):
        charge = mp.fmul(charge[0], mp.fmul(1.60217646,
                                            mp.fmul(10,
                                                    -19)))  # 1.60217646⋅10-19
    elif charge[1] in ('nanoCoulomb', 'nC'):
        charge = mp.fmul(charge[0], mp.power(10, -10))
    elif charge[1] in ('picoCharge', 'pC'):
        charge = mp.fmul(charge[0], mp.power(10, -12))

    # Calculating value of r_1 and r_2
    r_1 = mp.sqrt(
        mp.fsub(mp.fadd(mp.power(r, 2), mp.power(a, 2)),
                mp.fmul(2, mp.fmul(a, mp.fmul(r, cos_theta)))))
    r_2 = mp.sqrt(
        mp.fadd(mp.fadd(mp.power(r, 2), mp.power(a, 2)),
                mp.fmul(2, mp.fmul(a, mp.fmul(r, cos_theta)))))

    # Calculating final result
    result = mp.fmul(mp.fmul(charge, const_k),
                     mp.fsub(mp.fdiv(1, r_1), mp.fdiv(1, r_2)))

    # returning final result
    return result