Esempio n. 1
0
def phi3(x0, *,
         dps):  # (epx(x)-1-x-0.5*x*x)/(x*x*x) , |x| > 1e-32 -> dps > 100
    with mp.workdps(dps):
        y = mp.matrix([
            mp.fdiv(
                mp.fsub(mp.fsub(mp.expm1(x), x), mp.fmul('0.5', mp.fmul(
                    x, x))), mp.power(x, '3')) if x != 0.0 else mpf(1) / mpf(6)
            for x in x0
        ])
        return np.array(y.tolist(), dtype=x0.dtype)[:, 0]
Esempio n. 2
0
def FreeFermions(eigvec, subsystem, FermiVector):
	r=range(FermiVector)
	Cij=mp.matrix([[mp.fsum([eigvec[i,k]*eigvec[j,k] for k in r]) for i in subsystem] for j in subsystem])
	C_eigval=mp.eigsy(Cij, eigvals_only=True)
	EH_eigval=mp.matrix([mp.log(mp.fdiv(mp.fsub(mp.mpf(1.0),x),x)) for x in C_eigval])
	S=mp.re(mp.fsum([mp.log(mp.mpf(1.0)+mp.exp(-x))+mp.fdiv(x,mp.exp(x)+mp.mpf(1.0)) for x in EH_eigval]))
	return(S)
Esempio n. 3
0
def phi2(x0, *, dps):  # (exp(x) - 1 - x) / (x * x), |x| > 1e-32 -> dps > 40
    with mp.workdps(dps):
        y = mp.matrix([
            mp.fdiv(mp.fsub(mp.expm1(x), x), mp.fmul(x, x))
            if x != 0.0 else mpf(1) / mpf(2) for x in x0
        ])
        return np.array(y.tolist(), dtype=x0.dtype)[:, 0]
def diff(EP: float, AP: float):
    '''
    Purpose: to calculate the difference between the exact and approx value

    Return: returns the error
    '''
    return mp.fsub(EP, AP)
Esempio n. 5
0
def FreeFermions(subsystem, C):
    C = mp.matrix([[C[x, y] for x in subsystem] for y in subsystem])
    C_eigval = mp.eigh(C, eigvals_only=True)
    EH_eigval = mp.matrix(
        [mp.log(mp.fdiv(mp.fsub(mp.mpf(1.0), x), x)) for x in C_eigval])
    S = mp.re(
        mp.fsum([
            mp.log(mp.mpf(1.0) + mp.exp(-x)) + mp.fdiv(x,
                                                       mp.exp(x) + mp.mpf(1.0))
            for x in EH_eigval
        ]))
    return (S)
Esempio n. 6
0
def FreeFermions(subsystem,
                 C_t):  #implements free fermion technique by peschel
    C = mp.matrix([[C_t[x, y] for x in subsystem] for y in subsystem])
    C_eigval = mp.eigh(C, eigvals_only=True)
    EH_eigval = mp.matrix(
        [mp.log(mp.fdiv(mp.fsub(mp.mpf(1.0), x), x)) for x in C_eigval])
    S = mp.re(
        mp.fsum([
            mp.log(mp.mpf(1.0) + mp.exp(-x)) + mp.fdiv(x,
                                                       mp.exp(x) + mp.mpf(1.0))
            for x in EH_eigval
        ]))
    return (S)
Esempio n. 7
0
def rate_process_RMSE(rate_log_dic, correct_rate, size):
    l = []
    dic = {}
    correct_rate_mpf = mp.mpf(correct_rate)
    for i in rate_log_dic:
        if rate_log_dic[i] == None:
            continue
        else:
            element = mp.fsub(rate_log_dic[i], correct_rate_mpf)
            l.append(element)
    square = mp.fsum(l, squared=True)
    mean = mp.fdiv(square, size)
    root = mp.sqrt(mean)
    dic['rate_RMSE'] = root
    return dic
Esempio n. 8
0
def Sub(a, b):
    return mp.fsub(a, b, exact=True)
Esempio n. 9
0
def Sub(a, b):
    return mp.fsub(a, b, exact=True)
def dipole(r, theta, charge, a):
    '''
    Purpose      : To calculate Electric Potential due to Dipole considering very small values

    Formula Used :

            (q*const_k)*(1/r_1 - 1/r_2)

                   where,
                        r_1     = distance between negative charge and point of observation
                                = (r^2 + a^2 - 2*a*Cos(theta))**0.5
                        r_2     = distance between positive charge and point of observation
                                = (r^2 + a^2 + 2*a*Cos(theta))**0.5
                        const_k = 4*pi*epsilon_not
                                = 8.9875518 x 10^9

    Parameters   :
                   a) r      - distance between center of the dipole and point of observation
                   b) theta  - Angle between positive charge and point of observation
                   c) charge - either charge irrespective of sign
                   d) a      - distance between either charge and center of dipole

    Return: returns exact value of electric field calculated
    '''

    # Editing value of r as per the unit
    if r[1].lower() in ('meters', 'm'):
        r = r[0]
    elif r[1].lower() in ('centimeters', 'cm'):
        r = mp.fmul(r[0], 10**(-2))
    elif r[1].lower() in ('millimeters', 'mm'):
        r = mp.fmul(r[0], 10**(-3))
    elif r[1].lower() in ('angstroms', 'a', 'A'):
        r = mp.fmul(r[0], 10**(-10))

    # Editing value of a as per the unit
    if a[1].lower() in ('meters', 'm'):
        a = a[0]
    elif a[1].lower() in ('centimeters', 'cm'):
        a = mp.fmul(a[0], 10**(-2))
    elif a[1].lower() in ('millimeters', 'mm'):
        a = mp.fmul(a[0], 10**(-3))
    elif a[1].lower() in ('angstroms', 'a', 'A'):
        a = mp.fmul(a[0], 10**(-10))

    # Calculating Value of Cos(theta)
    if theta[1].lower() == 'radians':
        cos_theta = round(mp.cos(theta[0]), 5)
    elif theta[1].lower() == 'degrees':
        cos_theta = round(mp.cos(mp.radians(theta[0])), 5)

    # Editing Value of charge as per the unit
    if charge[1] in ('Coulomb', 'C'):
        charge = charge[0]
    elif charge[1] in ('microCoulomb', 'uC'):
        charge = mp.fmul(charge[0], 10**(-6))
    elif charge[1] in ('milliCoulomb', 'mC'):
        charge = mp.fmul(charge[0], 10**(-3))
    elif charge[1] in ('electronCharge', 'eC'):
        charge = mp.fmul(charge[0], mp.fmul(1.60217646,
                                            mp.fmul(10,
                                                    -19)))  # 1.60217646⋅10-19
    elif charge[1] in ('nanoCoulomb', 'nC'):
        charge = mp.fmul(charge[0], mp.power(10, -10))
    elif charge[1] in ('picoCharge', 'pC'):
        charge = mp.fmul(charge[0], mp.power(10, -12))

    # Calculating value of r_1 and r_2
    r_1 = mp.sqrt(
        mp.fsub(mp.fadd(mp.power(r, 2), mp.power(a, 2)),
                mp.fmul(2, mp.fmul(a, mp.fmul(r, cos_theta)))))
    r_2 = mp.sqrt(
        mp.fadd(mp.fadd(mp.power(r, 2), mp.power(a, 2)),
                mp.fmul(2, mp.fmul(a, mp.fmul(r, cos_theta)))))

    # Calculating final result
    result = mp.fmul(mp.fmul(charge, const_k),
                     mp.fsub(mp.fdiv(1, r_1), mp.fdiv(1, r_2)))

    # returning final result
    return result
# -*- coding: utf-8 -*-
"""
Created on Thu Jun  6 13:44:19 2019

arbitrary prescision

@author: Chris
"""

from mpmath import mp

mp.dps = 100  #set prescision (number of digits)
pi = mp.mpf(mp.pi)  #mpmath has a good built in pi

pi_string = '3.1415926535897932384626433832795028841971693993751058209749445923078164062'
print(len(pi_string), ' digits of pi')
#mpf input should be a string, entering a float is imprecise
pi2 = mp.mpf(pi_string)
difference = mp.fsub(pi2, pi)
digits_to_print = mp.dps - len(pi_string)  #number of sig. figs. to print
print('difference: ', end='')
mp.nprint(difference, n=digits_to_print)  #need nprint for mpf truncation

import decimal as de
de.getcontext().prec = 50  #set prescision for decimal module

pi_de = de.Decimal(pi_string)
### uncomment below
#print('decimal pi', pi_de)
#print('1/pi', 1/pi_de)