Esempio n. 1
0
def gamma_likelihoods(data, k, theta, xmin, xmax=False, discrete=False):
    if k<=0 or theta<=0:
        from numpy import tile
        from sys import float_info
        return tile(10**float_info.min_10_exp, len(data))

    data = data[data>=xmin]
    if xmax:
        data = data[data<=xmax]

    from numpy import exp
    from mpmath import gammainc
#    from scipy.special import gamma, gammainc #Not NEARLY numerically accurate enough for the job
    if not discrete:
        likelihoods = (data**(k-1)) / (exp(data/theta) * (theta**k) * float(gammainc(k)))
        #Calculate how much probability mass is beyond xmin, and normalize by it
        normalization_constant = 1 - float(gammainc(k, 0, xmin/theta, regularized=True)) #Mpmath's regularized option divides by gamma(k)
        likelihoods = likelihoods/normalization_constant
    if discrete:
        if not xmax:
            xmax = max(data)
        if xmax:
            from numpy import arange
            X = arange(xmin, xmax+1)
            PDF = (X**(k-1)) / (exp(X/theta) * (theta**k) * float(gammainc(k)))
            PDF = PDF/sum(PDF)
            likelihoods = PDF[(data-xmin).astype(int)]
    from sys import float_info
    likelihoods[likelihoods==0] = 10**float_info.min_10_exp
    return likelihoods
Esempio n. 2
0
def getnum_zfourge_single(M, z):
    """
    Converts stellar mass to number density at the given redshift using the ZFOURGE mass 
    functions by linearly interpolating the integrated fits between neighboring redshift bins.

    Parameters
    ==========
    M : Stellar mass in units of log(Msun), must be a single value (not an array).
    z : Redshift

    Returns
    =======
    N : Comoving cumulative number density in units of log(Mpc^-3)
    """
    from mpmath import gammainc

    par1, par2 = zfourgeparams(z)
    x = 10.**(M-par1[1])
    g1 = gammainc(par1[2]+1,a=x)
    g2 = gammainc(par1[4]+1,a=x)
    N1 = np.log10(10.**(par1[3])*float(g1) + 10.**(par1[5])*float(g2))

    x = 10.**(M-par2[1])
    g1 = gammainc(par2[2]+1,a=x)
    g2 = gammainc(par2[4]+1,a=x)
    N2 = np.log10(10.**(par2[3])*float(g1) + 10.**(par2[5])*float(g2))

    return (N1*(par2[0]-z)+N2*(z-par1[0]))/(par2[0]-par1[0])
Esempio n. 3
0
def muzzin_function(M, par, target=0):
    from mpmath import gammainc

    x = 10.**(M-par[1])
    g1 = gammainc(par[2]+1,a=x)
    g2 = gammainc(par[4]+1,a=x)
    return np.log10(par[3]*float(g1) + par[5]*float(g2))-target
Esempio n. 4
0
def gaussian_logx_given_r(r, sigma, n_dim):
    """
    Returns logx coordinate corresponding to r values for a Gaussian prior with
    the specificed standard deviation and dimension

    Uses mpmath package for arbitary precision.

    Parameters
    ----------
    r: float or numpy array
        Radial coordinates at which to evaluate logx.
    sigma: float
        Standard deviation of Gaussian.
    n_dim: int
        Number of dimensions.

    Returns
    -------
    logx: float or numpy array
        Logx coordinates corresponding to input radial coordinates.
    """
    exponent = 0.5 * (r / sigma) ** 2
    if isinstance(r, np.ndarray):  # needed to ensure output is numpy array
        logx = np.zeros(r.shape)
        for i, expo in enumerate(exponent):
            logx[i] = float(mpmath.log(mpmath.gammainc(n_dim / 2., a=0, b=expo,
                                                       regularized=True)))
        return logx
    else:
        return float(mpmath.log(mpmath.gammainc(n_dim / 2., a=0, b=exponent,
                                                regularized=True)))
Esempio n. 5
0
def liwhite_function(M, par, target=0):
    from mpmath import gammainc

    h = 0.7
    # log(M*), alpha, Phi*,
    par_high = [10.71 - np.log10(h**2), -1.99, 0.0044*h**3] 
    par_mid = [10.37 - np.log10(h**2), -0.9, 0.0132*h**3] 
    par_low = [9.61 - np.log10(h**2), -1.13, 0.0146*h**3] 

    # Pre-tabulated integrals
    hightot = 0.000280917465551   # Total contribution from high-mass piece
    subtractmid = 0.000245951678324549    # Value of middle Schechter fn integrated down to first break
    midtot = 0.00748165061711    # Total contribution from mid-mass piece
    subtractlow = 0.00266964412065

    if M > 10.67 - np.log10(h**2):
        x = 10.**(M-par_high[0])
        g = gammainc(par_high[1]+1,a=x)
        return np.log10(par_high[2]*float(g))-target
    elif M > 9.33 - np.log10(h**2):
        x = 10.**(M-par_mid[0])
        g = gammainc(par_mid[1]+1,a=x)
        return np.log10(par_mid[2]*float(g)-subtractmid+hightot)-target
    else:
        x = 10.**(M-par_low[0])
        g = gammainc(par_low[1]+1,a=x)
        return np.log10(par_low[2]*float(g)-subtractlow+midtot+hightot)-target
Esempio n. 6
0
def hmodel(theta, Mlow_choice, Mhigh_choice, zlow_choice, zhigh_choice):

    logno, beta, gamma, alpha, delta = theta

    no = 10.0**(logno)

    # Msol cancels from t = M/(10^7Msol)
    Mlow = float(Mlow_choice)  # 10.0**6.0 #Msol
    Mhigh = float(Mhigh_choice)  #10.0**11.0 #Msol
    tlow = Mlow / (10.0**(7.0 + delta))
    thigh = Mhigh / (10.0**(7.0 + delta))

    Mincomplete_gamma_fns = (mpmath.gammainc(
        ((5.0 / 3.0) - alpha), tlow) - mpmath.gammainc(
            ((5.0 / 3.0) - alpha), thigh))

    # zintegral from 0 to 5
    OmegaM = 0.3
    OmegaL = 0.7
    zlow = float(zlow_choice)  #0.0
    zhigh = float(zhigh_choice)  #5.0

    zfn = lambda zi: (((1.0 + zi)**(beta -
                                    (4.0 / 3.0)) * np.exp(-zi / gamma)) /
                      ((OmegaM * (1.0 + zi)**3.0 + OmegaL)**(1.0 / 2.0)))
    Zint = quad(zfn, zlow, zhigh, epsabs=1.49e-12, epsrel=1.49e-12)

    h2 = no * (10.0**(delta * (
        (5.0 / 3.0) - alpha))) * Mincomplete_gamma_fns * Zint[0] * (1.0 /
                                                                    np.log(10))

    h_no_constants = h2**(1.0 / 2.0)
    h = h_no_constants * constants()

    return h
Esempio n. 7
0
 def calculate_U_cold(self, rho):
     self.checkmat(rho)
     self.calculate_P_cold(self.rho)
     self.calculate_grun_cold(self.rho)
     if type(self.U_c) is not np.ndarray:
         self.U_c = np.zeros_like(self.rho)
         for i in range(len(self.rho)):
             if (self.rho[i] >= self.rho0):
                 d = (1. - self.A1) / self.A1
                 xae = (self.A0 / self.A1)
                 K = (self.B0 * math.exp(xae) /
                      (self.A1 * self.A0 * self.rho0)) * xae**(-d)
                 n = (self.A1 + self.A2) / self.A1
                 b = 1. / self.A1
                 xe = xae * (self.eta[i])**(-self.A1)
                 C = xae**(n - 1.) * mp.gammainc(1 - n, a=xae)
                 Fc1 = xae**(self.A2 /
                             self.A1) * (1. / b *
                                         (xe**b * mp.gammainc(1 - n, a=xe) -
                                          mp.gammainc(1 - n + b, a=xe)))
                 Fc2 = C * xe**(d + 1.) / (d + 1.)
                 Fc10 = xae**(self.A2 / self.A1) * self.G2_const
                 Fc20 = C * xae**(d + 1.) / (d + 1.)
                 self.U_c[i] = -K * (Fc1 - Fc2 - Fc10 + Fc20)
             else:
                 K = self.B0 / (self.Pexp_const_a - self.Pexp_const_b)
                 a = self.Pexp_const_a
                 b = self.Pexp_const_b
                 self.U_c[i] = K * (self.rho[i]**(a - 1.) /
                                    (self.rho0**(a) *
                                     (a - 1.)) + (self.rho[i]**(b - 1.)) /
                                    (self.rho0**(b) * (1. - b)))
Esempio n. 8
0
def integral(pos, shift, poles):
    """
		Returns the inner product of two monic monomials with respect to the
		positive measure prefactor that turns a `PolynomialVector` into a rational
		approximation to a conformal block.
	"""
    single_poles = []
    double_poles = []
    ret = mpmath.mpf(0)

    for p in poles:
        p = mpmath.mpf(str(p))

        if (p - shift) in single_poles:
            single_poles.remove(p - shift)
            double_poles.append(p - shift)
        elif (p - shift) < 0:
            single_poles.append(p - shift)

    for i in range(0, len(single_poles)):
        denom = mpmath.mpf(1)
        pole = single_poles[i]
        other_single_poles = single_poles[:i] + single_poles[i + 1:]
        for p in other_single_poles:
            denom *= pole - p
        for p in double_poles:
            denom *= (pole - p)**2
        ret += (mpmath.mpf(1) / denom) * (rho_cross**pole) * (
            (-pole)**pos) * mpmath.factorial(pos) * mpmath.gammainc(
                -pos, a=pole * mpmath.log(rho_cross))

    for i in range(0, len(double_poles)):
        denom = mpmath.mpf(1)
        pole = double_poles[i]
        other_double_poles = double_poles[:i] + double_poles[i + 1:]
        for p in other_double_poles:
            denom *= (pole - p)**2
        for p in single_poles:
            denom *= pole - p
        # Contribution of the most divergent part
        ret += (mpmath.mpf(1) /
                (pole * denom)) * ((-1)**(pos + 1)) * mpmath.factorial(pos) * (
                    (mpmath.log(rho_cross))**(-pos))
        ret -= (mpmath.mpf(1) / denom) * (rho_cross**pole) * (
            (-pole)**(pos - 1)) * mpmath.factorial(pos) * mpmath.gammainc(
                -pos, a=pole *
                mpmath.log(rho_cross)) * (pos + pole * mpmath.log(rho_cross))

        factor = 0
        for p in other_double_poles:
            factor -= mpmath.mpf(2) / (pole - p)
        for p in single_poles:
            factor -= mpmath.mpf(1) / (pole - p)
        # Contribution of the least divergent part
        ret += (factor / denom) * (rho_cross**pole) * (
            (-pole)**pos) * mpmath.factorial(pos) * mpmath.gammainc(
                -pos, a=pole * mpmath.log(rho_cross))

    return (rho_cross**shift) * ret
Esempio n. 9
0
        def series(z):
            if z == 1:
                z = 1 - 1e-8  # avoid a division by zero

            # sd: the definitions of gamma functions differ between packages,
            # and specifically between mpmath (used here) and scipy.special
            # See https://mpmath.org/doc/current/functions/expintegrals.html
            return (exp(c * z) / (1 - z)) * norm * (gammainc(c + 1, c * z) -
                                                    gammainc(c + 1, c))
Esempio n. 10
0
def zfourge_function(M, par, target=0):
    from mpmath import gammainc

    x = 10.**(M-par[1])
    g1 = gammainc(par[2]+1,a=x)
    g2 = gammainc(par[4]+1,a=x)
    N = np.log10(10.**(par[3])*float(g1) + 10.**(par[5])*float(g2))

    return N-target
Esempio n. 11
0
 def avTtmp(x, g, l):
     if (l > 0) & (l < 1):
         return ((mm.gamma(g * l) * mm.gamma(g * (1 - l)) * l**(1 - g * l) *
                  (1 - l)**(1 - g * (1 - l)) * g**(1 - g / 2)) *
                 mm.gammainc(g, a=np.sqrt(g) * x + g, regularized=True) *
                 (x + np.sqrt(g))**(-g) * mm.exp(np.sqrt(g) * x + g))
     else:
         return ((mm.gamma(g) * g**(-g / 2)) *
                 mm.gammainc(g, a=np.sqrt(g) * X[i] + g, regularized=True) *
                 (x + np.sqrt(g))**(-g) * mm.exp(np.sqrt(g) * x + g))
def MSD_generic(x0, H, lambd, sigma, t):
    y = np.zeros((len(t), 1))
    for i in range(0, len(t)):
        y[i, 0] = (x0**2) * ((1 - exp(-lambd * t[i]))**2).real + (sigma**2) * (
            t[i]**(2 * H)) * exp(-lambd * t[i]).real + (sigma**2) / (
                2 * (lambd**(2 * H))) * (complex(
                    gamma(2 * H + 1) - gammainc(2 * H + 1, lambd * t[i], inf)
                ) + exp(-2 * 1j * pi * H) * exp(-2 * lambd * t[i]) * complex(
                    gamma(2 * H + 1) - gammainc(2 * H + 1, -lambd * t[i], inf))
                                         ).real
    return y
Esempio n. 13
0
def cdf_truncpl(x, alpha, xmin, xmax):  # alpha=-1.0, xmin=1, xmax=np.inf):
    xvals = np.sort(x / xmin) / xmax
    if alpha <= -2:
        xvals = mpfv(xvals.tolist())
        cdf_theoretical = 1 - gammainc(alpha, a=xvals) /\
            gammainc(alpha, a=(xmin / xmax))
        return(cdf_theoretical.astype('float'))
    else:
        cdf_theoretical = 1 - gammaincplus2(alpha, xvals) /\
            gammaincplus2(alpha, 1.0 / xmax)
        return(cdf_theoretical)
Esempio n. 14
0
def test_gammaincc():
    # Check that the gammaincc in special._precompute.gammainc_data
    # agrees with mpmath's gammainc.
    assert_mpmath_equal(lambda a, x: gammaincc(a, x, dps=1000),
                        lambda a, x: mp.gammainc(a, a=x, regularized=True),
                        [Arg(20, 100), Arg(20, 100)],
                        nan_ok=False, rtol=1e-17, n=50, dps=1000)

    # Test the fast integer path
    assert_mpmath_equal(gammaincc,
                        lambda a, x: mp.gammainc(a, a=x, regularized=True),
                        [IntArg(1, 100), Arg(0, 100)],
                        nan_ok=False, rtol=1e-17, n=50, dps=50)
Esempio n. 15
0
def test_gammaincc():
    # Check that the gammaincc in special._precompute.gammainc_data
    # agrees with mpmath's gammainc.
    assert_mpmath_equal(lambda a, x: gammaincc(a, x, dps=1000),
                        lambda a, x: mp.gammainc(a, a=x, regularized=True),
                        [Arg(20, 100), Arg(20, 100)],
                        nan_ok=False, rtol=1e-17, n=50, dps=1000)

    # Test the fast integer path
    assert_mpmath_equal(gammaincc,
                        lambda a, x: mp.gammainc(a, a=x, regularized=True),
                        [IntArg(1, 100), Arg(0, 100)],
                        nan_ok=False, rtol=1e-17, n=50, dps=50)
Esempio n. 16
0
 def test_gdtrix(self):
     _assert_inverts(
         sp.gdtrix,
         lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
         2, [Arg(0, 1e3, inclusive_a=False), Arg(0, 1e3, inclusive_a=False),
             ProbArg()], rtol=1e-7,
         endpt_atol=[None, 1e-7, 1e-10])
Esempio n. 17
0
 def test_gdtrib(self):
     # Use small values of a and x or mpmath doesn't converge
     _assert_inverts(
         sp.gdtrib,
         lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
         1, [Arg(0, 1e2, inclusive_a=False), ProbArg(),
             Arg(0, 1e3, inclusive_a=False)], rtol=1e-5)
Esempio n. 18
0
 def test_gdtrix(self):
     _assert_inverts(
         sp.gdtrix,
         lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
         2, [Arg(0, 1e3, inclusive_a=False), Arg(0, 1e3, inclusive_a=False),
             ProbArg()], rtol=1e-7,
         endpt_atol=[None, 1e-10, 1e-10])
Esempio n. 19
0
def gammaincc(a, x, dps=50, maxterms=10*10*10*10*10*10*10*10):
    """Compute gammaincc exactly like mpmath does but allow for more
    terms in hypercomb. See

    mpmath/functions/expintegrals.py#L187

    in the mpmath github repository.

    """
    with mp.workdps(dps):
        z, a = a, x

        if mp.isint(z):
            try:
                # mpmath has a fast integer path
                return mpf2float(mp.gammainc(z, a=a, regularized=True))
            except mp.libmp.NoConvergence:
                pass
        nega = mp.fneg(a, exact=True)
        G = [z]
        # Use 2F0 series when possible; fall back to lower gamma representation
        try:
            def h(z):
                r = z-1
                return [([mp.exp(nega), a], [1, r], [], G, [1, -r], [], 1/nega)]
            return mpf2float(mp.hypercomb(h, [z], force_series=True))
        except mp.libmp.NoConvergence:
            def h(z):
                T1 = [], [1, z-1], [z], G, [], [], 0
                T2 = [-mp.exp(nega), a, z], [1, z, -1], [], G, [1], [1+z], a
                return T1, T2
            return mpf2float(mp.hypercomb(h, [z], maxterms=maxterms))
Esempio n. 20
0
 def equations(p):
     alpha, kappa0, kappaC, P0, k_bar = p
     return (alpha - 1 + (kappa0 / kappaC)**(gamma - 2),
             P0 - (gamma - 1) * (alpha * kappa0)**(gamma - 1) *
             mpmath.gammainc(1 - gamma, alpha * kappa0), k_max_obs -
             alpha * kappaC, k_bar * alpha**2 - (1 - P0) * k_bar_obs,
             kappa0 * (gamma - 1) - k_bar * (gamma - 2))
Esempio n. 21
0
def truncated_power_law_likelihoods(data, alpha, gamma, xmin, xmax=False, discrete=False):
    if alpha<0 or gamma<0:
        from numpy import tile
        from sys import float_info
        return tile(10**float_info.min_10_exp, len(data))

    data = data[data>=xmin]
    if xmax:
        data = data[data<=xmax]

    from numpy import exp
    if not discrete:
        from mpmath import gammainc
#        likelihoods = (data**-alpha)*exp(-gamma*data)*\
#                (gamma**(1-alpha))/\
#                float(gammainc(1-alpha,gamma*xmin))
        likelihoods = (gamma**(1-alpha))/\
                ( (data**alpha) * exp(gamma*data) * gammainc(1-alpha,gamma*xmin) ).astype(float) #Simplified so as not to throw a nan from infs being divided by each other
    if discrete:
        if not xmax:
            xmax = max(data)
        if xmax:
            from numpy import arange
            X = arange(xmin, xmax+1)
            PDF = (X**-alpha)*exp(-gamma*X)
            PDF = PDF/sum(PDF)
            likelihoods = PDF[(data-xmin).astype(int)]
    from sys import float_info
    likelihoods[likelihoods==0] = 10**float_info.min_10_exp
    return likelihoods
Esempio n. 22
0
def lin_Ez_theo_sigma_r(plasma, beam, zeta_array):

    Ez = -np.sign(beam.Z) * np.sqrt(2 * math.pi) * beam.n/plasma.n * plasma.k_p*beam.sigma_z \
         * np.exp(-1 * (plasma.k_p*beam.sigma_z)**2/2) * np.cos( plasma.k_p * (zeta_array - beam.zeta_0) ) \
         * (plasma.k_p*beam.sigma_r)**2/2 * np.exp((plasma.k_p*beam.sigma_r)**2/2) * mpmath.gammainc(0.0,(plasma.k_p*beam.sigma_r)**2/2)

    return Ez
Esempio n. 23
0
 def equations(p):
     alpha, kappa0,kappaC,P0,k_bar = p
     return (alpha-1+(kappa0/kappaC)**(gamma-2),
         P0- (gamma-1)*(alpha*kappa0)**(gamma-1)*mpmath.gammainc(1-gamma,alpha*kappa0),
         k_max_obs-alpha*kappaC,
         k_bar*alpha**2-(1-P0)*k_bar_obs,
         kappa0*(gamma-1)-k_bar*(gamma-2))
Esempio n. 24
0
def gammaincc(a, x, dps=50, maxterms=10**8):
    """Compute gammaincc exactly like mpmath does but allow for more
    terms in hypercomb. See

    mpmath/functions/expintegrals.py#L187

    in the mpmath github repository.

    """
    with mp.workdps(dps):
        z, a = a, x
        
        if mp.isint(z):
            try:
                # mpmath has a fast integer path
                return mpf2float(mp.gammainc(z, a=a, regularized=True))
            except mp.libmp.NoConvergence:
                pass
        nega = mp.fneg(a, exact=True)
        G = [z]
        # Use 2F0 series when possible; fall back to lower gamma representation
        try:
            def h(z):
                r = z-1
                return [([mp.exp(nega), a], [1, r], [], G, [1, -r], [], 1/nega)]
            return mpf2float(mp.hypercomb(h, [z], force_series=True))
        except mp.libmp.NoConvergence:
            def h(z):
                T1 = [], [1, z-1], [z], G, [], [], 0
                T2 = [-mp.exp(nega), a, z], [1, z, -1], [], G, [1], [1+z], a
                return T1, T2
            return mpf2float(mp.hypercomb(h, [z], maxterms=maxterms))
Esempio n. 25
0
def plot_fit(alpha, Lambda, xmin, pdf, ccdf, degs, title=None, ax=None):
    C = Lambda**(1 - alpha) / (mpmath.gammainc(1 - alpha, Lambda * xmin))
    pdf_hat = degs[degs >= xmin]**-alpha * np.exp(
        -Lambda * degs[degs >= xmin]) * C
    ccdf_hat = 1 - np.cumsum(pdf_hat)
    if not ax:
        fig = plt.figure(figsize=(12, 9))
        ax = fig.add_subplot(111)
    ax.scatter(degs,
               pdf,
               marker='o',
               label='True',
               color=sns.xkcd_rgb["deep blue"])
    ax.plot(degs[degs >= xmin],
            pdf_hat,
            marker='*',
            label='Fit',
            color=sns.xkcd_rgb["pale red"])
    ax.set_xscale('log')
    ax.set_yscale('log')
    ax.set_ylabel('Proportion')
    ax.set_xlabel('Degree')
    if title:
        ax.set_title(title)
    ax.legend()

    plot_text_x = 10**(np.mean(np.log10(ax.get_xlim())))
    plot_text_y = plot_text_x**-alpha * np.exp(-Lambda * plot_text_x) * C
    ax.annotate(r'$\alpha=%.2f$, $\lambda=%.2g$, ' % (alpha, Lambda),
                xy=(plot_text_x, plot_text_y),
                color=sns.xkcd_rgb["pale red"])

    plt.show()
Esempio n. 26
0
    def calculate_P_cold(self, rho):
        self.checkmat(rho)

        if type(self.P_c) is not np.ndarray:
            self.P_c = np.zeros_like(self.rho)
            for i in range(len(self.rho)):
                if (self.rho[i] >= self.rho0):
                    x2 = self.A0 / self.A1
                    d = self.B0 * math.exp(x2) / self.A1
                    x1 = x2 * self.eta[i]**(-self.A1)
                    n = (self.A1 + self.A2) / self.A1
                    g1 = x1**(n - 1) * mp.gammainc(1 - n, a=x1)
                    P1 = 0
                    P2 = 0
                    eta = self.eta[i]
                    if (self.rho[i] > self.rho_critical):
                        eta = self.etacrit
                        P2 = self.C * self.rho[i]**(
                            5. / 3.) - self.D * self.rho[i]**(
                                4. / 3.) - self.E * self.rho[i]
                        P1 = self.C * self.rho_critical**(
                            5. / 3.) - self.D * self.rho_critical**(
                                4. / 3.) - self.E * self.rho_critical
                    Ppoly = d * (eta**self.A2 * g1 - self.G1_const)
                    self.P_c[i] = (Ppoly - P1) + P2
                else:
                    self.P_c[i] = self.Bexp0 * (
                        self.eta[i]**self.Pexp_const_a -
                        self.eta[i]**self.Pexp_const_b)
Esempio n. 27
0
 def test_gdtrib(self):
     # Use small values of a and x or mpmath doesn't converge
     _assert_inverts(
         sp.gdtrib,
         lambda a, b, x: mpmath.gammainc(b, b=a*x, regularized=True),
         1, [Arg(0, 1e2, inclusive_a=False), ProbArg(),
             Arg(0, 1e3, inclusive_a=False)], rtol=1e-5)
Esempio n. 28
0
def corr_func(i, j, k, cube_half_length, beta, outer_scale, sigma):

    mpmath.mp.dps = 10

    x = math.sqrt(
        pow(i - cube_half_length, 2) + pow(j - cube_half_length, 2) +
        pow(k - cube_half_length, 2))

    y = ((math.exp(pow(sigma, 2)) - 1) / 2 * mpmath.re(
        pow(x, beta - 3) *
        (pow(1j, 3 - beta) * mpmath.gammainc(2 - beta, a=-x * 1.0j / 2.54) +
         pow(-1j, 3 - beta) * mpmath.gammainc(2 - beta, a=x * 1.0j / 2.54))) +
         1)

    y = mpmath.log(y)
    return float(mpmath.nstr(y))
Esempio n. 29
0
def interval_prob(x1, x2, k, theta):
    """
    Compute the probability of x in [x1, x2] for the log-gamma distribution.

    Mathematically, this is the same as

        loggamma.cdf(x2, k, theta) - loggamma.cdf(x1, k, theta)

    but when the two CDF values are nearly equal, this function will give
    a more accurate result.

    x1 must be less than or equal to x2.

    k is the shape parameter of the gamma distribution.
    theta is the scale parameter of the log-gamma distribution.
    """
    if x1 > x2:
        raise ValueError('x1 must not be greater than x2')

    with mpmath.extradps(5):
        x1 = mpmath.mpf(x1)
        x2 = mpmath.mpf(x2)
        k = mpmath.mpf(k)
        theta = mpmath.mpf(theta)
        z1 = x1 / theta
        z2 = x2 / theta
        return mpmath.gammainc(k,
                               mpmath.exp(z1),
                               mpmath.exp(z2),
                               regularized=True)
Esempio n. 30
0
def exp_cts(th, config,prior,Xt):
    '''calc's the expected counts in bins with endpoints defined by Xt, with pulses def'd by th
    th: J x 7 np.array for J pulses, 7 parameters per pulse.
    config, prior: bunchs of parameters
    Xt: list of times (truncated according to the parameters in config)
    
    returns:
    exp_counts:  4 x (len(Xt)-1) nparray with the expected counts in the len(Xt)-1 bins for the 4 channels. note that 
    nchan is hardcoded here.

'''
    int_length=np.array([float(Xt[ind+1]-Xt[ind]) for ind in xrange(len(Xt)-1)])
    k = len(th) # number  of pulses

    
    drms = config.drms
    out  = 0
    quad_nodes = drms.quad_nodes


    n_intervals = len(int_length)
    n_chan = len(config.B)

    exp_counts = np.zeros((4,n_intervals))
    thinned_counts = np.zeros((4,n_intervals))
    
    energy_int = []
    for j in range(k):
       T,A,gam,lam,alpha,bet,Ec = th[j]
       temp =   (Ec)*((Ec/100.)**alpha*mpmath.gammainc(alpha+1,a = 10.*(1./Ec), )  )/lam

       energy_int.append(temp  )

    E_l, E_u = drms.E_l, drms.E_u 
    exp_cts_0 = np.zeros((4,n_intervals))
    
    for i in range(n_intervals):
       for j in range(k):
            gam = th[j,2] 
            if gam >= 0:
                lower = 100*np.exp( ((Xt[i+1]+Xt[i])/2 - th[j,0] )/(-th[j,2]) )
                l = round(max(lower, E_l),2)
                u = E_u
            if gam < 0:
                upper = 100*np.exp( ((Xt[i+1]+Xt[i])/2 - th[j,0] )/(-th[j,2]) )
                l = E_l
                u = round(min(E_u,upper),2)
                
            Range = [l,u]
            if l>=u:
                Range = None
            if Range != None:
                nodes, wts = mbs_quad_nodes_wts(l, u,config)
                
                exp_cts_0[:,i] += np.copy(np.sum(K(np.array([Xt[i],Xt[i+1]]),nodes,np.array([th[j]]))*wts, axis = 1))/energy_int[j]
                

       exp_counts[:,i] =  np.array(config.B)*int_length[i]+ np.array(exp_cts_0[:,i])
    return exp_counts
Esempio n. 31
0
def test_gammainc():
    # Quick check that the gammainc in
    # special._precompute.gammainc_data agrees with mpmath's
    # gammainc.
    assert_mpmath_equal(gammainc,
                        lambda a, x: mp.gammainc(a, b=x, regularized=True),
                        [Arg(0, 100, inclusive_a=False), Arg(0, 100)],
                        nan_ok=False, rtol=1e-17, n=50, dps=50)
Esempio n. 32
0
def indef_mon_exp_int(x, order, scale, t):
    """
    Evaluates the indefinite integral of x^order * exp(scale*(t - x)))
    with the constant of integration arbitrarily set to 0.
    """
    return prod([-np.exp(scale * t), x**(order + 1), 
                (scale * x)**(-1 - order),
                complex(gammainc(1 + order, scale * x))])
Esempio n. 33
0
def test_gamma_inc(n=50, tol=1e-16):
    mp.mp.dps = 64
    for i in range(n):
        s = cplx_rand(-5, 5, -5, 5)
        z = cplx_rand(-5, 5, -5, 5)
        g = cf.gamma_inc(s, z, tol)
        g_mp = mp.gammainc(s, z)
        assert (abs(g - complex(g_mp))) / abs(complex(g_mp)) < tol
Esempio n. 34
0
def test_gammainc():
    # Quick check that the gammainc in
    # special._precompute.gammainc_data agrees with mpmath's
    # gammainc.
    assert_mpmath_equal(gammainc,
                        lambda a, x: mp.gammainc(a, b=x, regularized=True),
                        [Arg(0, 100, inclusive_a=False), Arg(0, 100)],
                        nan_ok=False, rtol=1e-17, n=50, dps=50)
Esempio n. 35
0
def boys(n, x):
    if x > 0.0:
        f = 2.0*x**(n + 0.5)
        g = gamma(n + 0.5)
        gi = 1.0 - gammainc(n + 0.5, x, regularized=True)
        return g*gi/f
    else:
        return 1.0/(n*2 + 1)
Esempio n. 36
0
    def analyticaloccnum(self, theta):
        """
    This is the analytical form of HOD number from either CSMFunction or CLFunction
    based on Cacciato et al 2009 MNRAS 394.
    """
        Msmin, Msmax, color = theta
        params = self.paramtable()
        Mhost = params['logMh']
        phis = params['phi']
        alphas = params['alpha']
        lgMcs = params['lgMc']
        sigss = params['sigs']

        nbins = 300
        ncen = np.zeros(nbins)
        nsat = np.zeros(nbins)
        mbins = np.linspace(12.17, 14.5, nbins)

        for i in range(nbins):
            logMh = mbins[i]
            if color == 0:
                phi = np.interp(logMh, Mhost, phis[0, :])
                alpha = np.interp(logMh, Mhost, alphas[0, :])
                lgMc = np.interp(logMh, Mhost, lgMcs[0, :])
                sigs = np.interp(logMh, Mhost, sigss[0, :])
            if color == 1:
                phi = np.interp(logMh, Mhost, phis[1, :])
                alpha = np.interp(logMh, Mhost, alphas[1, :])
                lgMc = np.interp(logMh, Mhost, lgMcs[1, :])
                sigs = np.interp(logMh, Mhost, sigss[1, :])
            if color == 2:
                phi = np.interp(logMh, Mhost, phis[2, :])
                alpha = np.interp(logMh, Mhost, alphas[2, :])
                lgMc = np.interp(logMh, Mhost, lgMcs[2, :])
                sigs = np.interp(logMh, Mhost, sigss[2, :])

            ncen[i] = 0.5 * (erf((Msmax - lgMc)) - erf(Msmin - lgMc))
            tmp1 = 0.5 * alpha + 0.5
            tmp2 = (10.0**(Msmin - (lgMc - 0.25)))**2.0
            tmp3 = (10.0**(Msmax - (lgMc - 0.25)))**2.0
            gamma1 = mpmath.gammainc(tmp1, tmp2)
            gamma2 = mpmath.gammainc(tmp1, tmp3)
            nsat[i] = 0.5 * phi * (gamma1 - gamma2)

        return {'Mhrange': mbins, 'Occen': ncen, 'Ocsat': nsat}
Esempio n. 37
0
def sf(k, lam):
    """
    Survival function of the Poisson distribution.
    """
    if k < 0:
        return mpmath.mp.one
    with mpmath.extradps(5):
        lam = mpmath.mpf(lam)
        return mpmath.gammainc(k + 1, 0, lam, regularized=True)
Esempio n. 38
0
def cdf(k, lam):
    """
    CDF of the Poisson distribution.
    """
    if k < 0:
        return mpmath.mp.zero
    with mpmath.extradps(5):
        lam = mpmath.mpf(lam)
        return mpmath.gammainc(k + 1, lam, regularized=True)
Esempio n. 39
0
def sf(x, k, theta):
    """
    Survival function of the gamma distribution.
    """
    _validate_k_theta(k, theta)
    x = mpmath.mpf(x)
    k = mpmath.mpf(k)
    theta = mpmath.mpf(theta)
    return mpmath.gammainc(k, x/theta, mpmath.inf, regularized=True)
Esempio n. 40
0
def cuflux(n, s, c=1000000., e_th=1.0, norm_crab=3.45e-11, si_crab=2.63):
    f = -1.
    #if ((c==0) | (c>=100000)):
    if (all((in1d(c, 0)) | greater_equal(c, 100000))):
        f = n / norm_crab * (1. - si_crab) / (1. - s) * e_th**(si_crab - s)
    else:
        if (isinstance(n, ndarray) | isinstance(s, ndarray)
                | isinstance(c, ndarray)):
            #array operations seems to fail due to use of 'mpf' in gammainc
            #using loop instead
            i = 0
            for ni, si, ci in zip(n, s, c):
                f = -ni / norm_crab * ci**(1. - si) * (1. - si_crab) * e_th**(
                    -1. + si_crab) * gammainc(1. - si, e_th / ci)
                i += 1
        else:
            f = -n / norm_crab * c**(1. - s) * (1. - si_crab) * e_th**(
                -1. + si_crab) * gammainc(1. - s, e_th / c)
    return f
Esempio n. 41
0
def band(engs, params, flux):
	alpha = float(params[0]) # low-energy index
	beta = float(params[1]) # high-energy index
	efold = float(params[2]) # e-folding energy, E_0
	
	for i in range(len(engs)-1):
		if engs[i] < ((alpha - beta) * efold):
			multiplier = ((100**(-alpha)) * (efold**(alpha+1.)))
			lowIntegral =  float(mpmath.gammainc(alpha + 1., (engs[i]/efold)))
			highIntegral = float(mpmath.gammainc(alpha + 1., (engs[i+1]/efold)))
			val = multiplier * (lowIntegral - highIntegral)
			flux[i] = val
		
		else:
			multiplier = ((1./(beta + 1.))* ((100**(-alpha)) * ((alpha - beta)**(alpha-beta)) * -exp(beta-alpha) * (efold**(alpha-beta))))
			lowIntegral = engs[i]**(beta+1.)
			highIntegral = engs[i+1]**(beta+1.)
			val = multiplier * (lowIntegral - highIntegral)
			flux[i] = val
Esempio n. 42
0
def int_himf_res(phi, mstar, alpha, mlow, mhigh, foot, beam, nres):
    """
    An adapted integration of the HIMF where mass limits
    are overruled by requiring the main HI disk
    to be resolved by at least "nres" "beam"
    """
    #first, find the maximum distance to which mhigh is resolved
    #this is the upper limit
    dmax = get_dist_res(np.log10(mhigh), beam * u.arcsec, nres)
    dmax = dmax.value

    #set the survey area in steradian
    omega = foot * (np.pi / 180.)**2

    #set the bins
    d_bins = np.arange(0, dmax, dmax / 1000.)

    #set numbers before iteration
    dn_full = phi * (mp.gammainc((alpha + 1), mlow / mstar) - mp.gammainc(
        (alpha + 1), mhigh / mstar))  #number density for full range
    N = 0.
    vol = 0.

    for d in d_bins:
        #print(d,omega*d**2*(dmax/1000.),vol)
        #for each shell calc number of sources
        #first have to figure out mhi_min
        mhi_min = get_mass_resolved(d * u.Mpc, beam * u.arcsec, nres)
        mhi_min = mhi_min.value
        if mhi_min < mlow:
            #just use number density times volume of shell
            N = N + dn_full * omega * d**2 * dmax / 1000.
            #print(N)
        elif mhi_min < mhigh:
            dn = phi * (mp.gammainc(
                (alpha + 1), mhi_min / mstar) - mp.gammainc(
                    (alpha + 1), mhigh / mstar)
                        )  #have to cal w/ limited lower mass
            N = N + dn * omega * d**2 * dmax / 1000.
        vol = vol + omega * d**2 * dmax / 1000.

    return dmax, np.float(N)
Esempio n. 43
0
def chisquare(observed, expected):
    """
    Pearson's chi-square test.

    Test whether the observed frequency distribution differs from the
    expected frequency distribution.
    """
    chi2 = sum((obs - exp)**2 / exp for obs, exp in zip(observed, expected))
    df = len(observed) - 1
    p = mpmath.gammainc(df / 2, chi2 / 2) / mpmath.gamma(df / 2)
    return chi2, p
Esempio n. 44
0
 def creatematerial(self, rho0, B0, dBdP0, AA, ZZ, tmin, delta):
     self.rho0 = float(rho0)
     self.B0 = float(B0)
     self.dBdP0 = float(dBdP0)
     self.AA = float(AA)
     self.ZZ = float(ZZ)
     self.tmin = float(tmin)
     self.delta = float(delta)
     self.findA()
     self.etacrit = float(self.rho_critical / self.rho0)
     x2 = self.A0 / self.A1
     n = (self.A1 + self.A2) / self.A1
     b = 1. / self.A1
     self.G1_const = x2**(n - 1) * mp.gammainc(1 - n, a=x2)
     self.G2_const = (
         1. / b *
         (x2**b * mp.gammainc(1 - n, a=x2) - mp.gammainc(1 - n + b, a=x2)))
     self.rho = np.array([float(self.rho0)])
     self.grun0, self.grun_q0, self.grun_lamb0 = self.calculate_grun_cold(
         self.rho0)
Esempio n. 45
0
def def_mon_exp_int(x_start, x_end, order, scale, t):
    """
    Evaluates the integral from `x_start` to `x_end` of 
    x^order * exp(scale*(t - x)).
    """
    if x_start == 0.0:
        return prod([x_end**order / scale, (scale * x_end)**(-order),
                    np.exp(scale * t), 
                    fctrl(order) - complex(gammainc(order + 1, scale * x_end))])
    else:
        return indef_mon_exp_int(x_end, order, scale, t) -\
                indef_mon_exp_int(x_start, order, scale, t) 
Esempio n. 46
0
def cdf(x, k):
    """
    CDF for the chi distribution.
    """
    _validate_k(k)
    if x <= 0:
        return mpmath.mp.zero
    with mpmath.extradps(5):
        x = mpmath.mpf(x)
        k = mpmath.mpf(k)
        c = mpmath.gammainc(k/2, a=0, b=x**2/2, regularized=True)
    return c
Esempio n. 47
0
def sf(x, k):
    """
    Survival function for the chi distribution.
    """
    _validate_k(k)
    if x <= 0:
        return mpmath.mp.one
    with mpmath.extradps(5):
        x = mpmath.mpf(x)
        k = mpmath.mpf(k)
        s = mpmath.gammainc(k/2, a=x**2/2, b=mpmath.inf, regularized=True)
    return s
Esempio n. 48
0
    def _cdf_notTruncated(self, a, b, dps):
        """
        Compute the probability of being in the interval (a, b)
        for a variable with a chi distribution (not truncated)
        
        Parameters
        ----------
        a, b : float
            Bounds of the interval. Can be infinite.

        dps : int
            Decimal precision (decimal places). Used in mpmath

        Returns
        -------
        p : float
            The probability of being in the intervals (a, b)
            P( a < X < b)
            for a non truncated variable

        """
        scale = self._scale
        k = self._k

        dps_temp = mp.mp.dps
        mp.mp.dps = dps

        a = max(0, a)
        b = max(0, b)

        sf = mp.gammainc(1./2 * k, 
                         1./2*((a/scale)**2), 
                         1./2*((b/scale)**2), 
                         regularized=True)
        mp.mp.dps = dps_temp
        return sf
#!/usr/bin/python
"""
"""

import mpmath as mp
import numpy  as np
import sys


mp.mp.dps = 60

z    = float(sys.argv[1])
a_lo = float(sys.argv[2])
a_hi = float(sys.argv[3])
n    = int  (sys.argv[4])

for x in np.logspace(a_lo, a_hi, 1000) :
    x = mp.mpf(x)
    print x, mp.gammainc(z, 0, x, regularized=True)
Esempio n. 50
0
def cdf_truncpl(x, alpha=-1.0, xmin=1, xmax=np.inf):
    xvals = np.sort(x) / xmax
    xvals = mpfv(xvals.tolist())
    cdf_theoretical = 1 - gammainc(alpha, a=xvals) /\
        gammainc(alpha, a=(xmin / xmax))
    return(cdf_theoretical.astype('float'))
Esempio n. 51
0
 def test_gammainc(self):
     assert_mpmath_equal(sc.gammainc,
                         _exception_to_nan(
                             lambda z, b: mpmath.gammainc(z, b=b)/mpmath.gamma(z)),
                         [Arg(a=0), Arg(a=0)])
Esempio n. 52
0
def rootfinding(luminosity,luminosityParameter,nold):
	return np.log10(luminosityParameter[0][0])+float(mpmath.log10(mpmath.gammainc(luminosityParameter[2][0]+1,luminosity/luminosityParameter[1][0])))-float(nold)
Esempio n. 53
0
 def test_chdtriv(self):
     _assert_inverts(
         sp.chdtriv,
         lambda v, x: mpmath.gammainc(v/2, b=x/2, regularized=True),
         0, [ProbArg(), IntArg(1, 100)], rtol=1e-4)
Esempio n. 54
0
def LuminosityFunction(luminosityParameter,luminosity):
	return np.log10(luminosityParameter[0])+float(mpmath.log10(mpmath.gammainc(luminosityParameter[2]+1,luminosity/luminosityParameter[1])))
#This code is used to compute the mean number of galaxies with luminosities
#above a certain threshold. It uses the Press-Schechter luminosity function
#with parameters obtained from Blanton et al 2003. For details see:
# http://www.astro.virginia.edu/class/whittle/astr553/Topic04/Lecture_4.html

import numpy as np
import mpmath #used to compute the incomplete gamma function

########################### INPUT ##############################
M = -20.5 #This is maximum magnitude of the galaxies in the sample
################################################################

#### Press-Schechter parameter: taken form Blanton et al. 2003
M_star = -20.44 
alpha = -1.05   
n_star = 1.49e-2 #galaxies h^3 / Mpc^3


ratio_L = 10**(0.4*(M_star-M))

density = n_star * mpmath.gammainc(1.0+alpha,ratio_L) #galaxies h^3 / Mpc^3

print density,'galaxies / (Mpc/h)^3 with M - 5*log10(h) <',M
Esempio n. 56
0
def ExpPL_Wolf(x):
	return E_c*(-k_norm)*(x**(-gamma))*((x/E_c)**gamma)*mpmath.gammainc(1. - gamma, x/E_c)