Esempio n. 1
0
def test_computeDiscreteGaussianVariance(sigma_sq):

    # Alternative calculation of the variance,
    # based on Lemma 22 in Cannone et al. (aka Eqn. (41) in the form based on Fourier transforms (page 23)
    # Also, the numerator and denominator sums in the definition are expressible via Jacobi Theta functions, implemented in mpmath

    # Definition sums are the fastest, then FT sums, then calculation of jtheta which mpmath does with arbitrary precision,
    # hence the definition sums are chosen to be the working implementation and the others are tests

    SQRT2P = np.sqrt(2. * np.pi)
    sigma_sq_fl = float(sigma_sq)
    sigma = np.sqrt(sigma_sq_fl)
    bound = np.floor(100. * sigma)

    t = np.arange(-bound, bound + 1)
    pi_t = np.pi * t
    fac2 = np.exp(-2. * pi_t * pi_t * sigma_sq_fl)
    f_hat_fac1 = SQRT2P * sigma * sigma * sigma
    f_hat_fac3 = 1. - 4. * pi_t * pi_t * sigma_sq_fl
    g_hat_fac1 = SQRT2P * sigma
    sum_f_hat = np.sum(f_hat_fac1 * fac2 * f_hat_fac3)
    sum_g_hat = np.sum(g_hat_fac1 * fac2)
    var_ft = sum_f_hat / sum_g_hat

    mpmath.MPContext.THETA_Q_LIM = 0.99999999999999999
    mpmath.mp.prec = 80
    q = mpmath.exp(-1 / (2 * sigma_sq))
    var_sp_fun = -mpmath.jtheta(3, 0, q, 2) / (4 * mpmath.jtheta(3, 0, q))

    var = primitives.computeDiscreteGaussianVariance(sigma_sq)

    #print(var_ft, var, 2 * abs(var_ft - var) / (var_ft + var) )
    assert 2 * abs(var_ft - var) / (var_ft + var) < 1e-10
    assert 2 * abs(var_sp_fun - var) / (var_sp_fun + var) < 1e-10
Esempio n. 2
0
def calc_mu(k, x1, x2, x3, zeta, abel):
    mu = []
    for i in range(0, 4, 1):
        mu.append(complex(
            0.25 *pi* ((jtheta(1, abel[i]*pi,  qfrom(k=k), 1) / (jtheta(1, abel[i]*pi,  qfrom(k=k), 0)) )
                       + (jtheta(3, abel[i]*pi,  qfrom(k=k), 1) / (jtheta(3, abel[i]*pi,  qfrom(k=k), 0)) )) \
            - x3 - (x2 + complex(0,1) *x1) * zeta[i]))
    return mu
Esempio n. 3
0
def calc_mu(k, x1, x2, x3, zeta, abel):
    mu = []
    for i in range(0, 4, 1):
        mu.append(complex(
            0.25 *pi* ((jtheta(1, abel[i]*pi,  qfrom(k=k), 1) / (jtheta(1, abel[i]*pi,  qfrom(k=k), 0)) )
                       + (jtheta(3, abel[i]*pi,  qfrom(k=k), 1) / (jtheta(3, abel[i]*pi,  qfrom(k=k), 0)) )) \
            - x3 - (x2 + complex(0,1) *x1) * zeta[i]))
    return mu
Esempio n. 4
0
 def testIdentity2(self):
     """eta(t)**3 = theta_2(0,q(t))theta_3(0,q(t))theta_4(0,q(t))/2"""
     # eta at omega, a third root of unity
     omega = (-1 + mpmath.sqrt(3) * 1j) / 2
     eta3cubed = ecpp.dedekind(omega, 15)**3
     triple = (mpmath.jtheta(2, 0, q(omega)) *
               mpmath.jtheta(3, 0, q(omega)) *
               mpmath.jtheta(4, 0, q(omega)) / 2)
     self.assertTrue(mpmath.almosteq(triple, eta3cubed),
                     triple - eta3cubed)
Esempio n. 5
0
def DedekindEtaA4(tau):
    ''' Compute the derivative of the Dedekind Eta function for imaginary argument tau. 
        Numerically. '''
    try:
        import mpmath as mp
        mpmath_loaded = True
    except ImportError:
        mpmath_loaded = False 
    
    return mp.cbrt(0.5*mp.jtheta(2,0,mp.exp(-mp.pi*tau))*mp.jtheta(3,0,mp.exp(-mp.pi*tau))*mp.jtheta(4,0,mp.exp(-mp.pi*tau)))
Esempio n. 6
0
def dThetaRatio(z,q,n):
    ''' Compute the ratio of the nth derivative of the third Jacobi theta function
        with itself.'''
    try:
        import mpmath as mp
        mpmath_loaded = True
    except ImportError:
        mpmath_loaded = False 
        
    #return (mp.djtheta(3,z,q,n)/mp.jtheta(3,z,q))
    return (mp.jtheta(3,z,q,n)/mp.jtheta(3,z,q))
def w(v,s,b):
    """
    conformal map for double splitting quench (Equation 5.1). In this code v means \nu.

    We can interpret the convention for elliptic theta function,
    \theta_1(\nu,\tau) in Equation 5.3 = jtheta(1,pi*nu,exp(pi*j*tau)).

    s : moduli parameter. The Hawking Page phase transition point is s=1.
    b : quench point. We consider double splitting at x=b,-b.

    s and b must be positive number to get right answer.
    """
    return -j*b*( jtheta(1,pi*v,exp(-pi*s),1)/jtheta(1,pi*v,exp(-pi*s),0) + jtheta(1,pi*(v+j*s/2),exp(-pi*s),1)/jtheta(1,pi*(v+j*s/2),exp(-pi*s),0) + j )
	def sigma(self,z):
		# A+S 18.10.
		from mpmath import pi, jtheta, exp, mpc, sqrt, sin
		Delta = self.Delta
		e1, _, _ = self.__roots
		om = self.__periods[0] / 2
		omp = self.__periods[1] / 2
		if self.__ng3:
			z = mpc(0,1) * z
		if Delta > 0:
			tau = omp / om
			q = (exp(mpc(0,1) * pi() * tau)).real
			eta = -(pi()**2 * jtheta(n=1,z=0,q=q,derivative=3)) / (12 * om * jtheta(n=1,z=0,q=q,derivative=1))
			v = (pi() * z) / (2 * om)
			retval = (2 * om) / pi() * exp((eta * z**2)/(2 * om)) * jtheta(n=1,z=v,q=q)/jtheta(n=1,z=0,q=q,derivative=1)
		elif Delta < 0:
			om2 = om + omp
			om2p = omp - om
			tau2 = om2p / (2 * om2)
			q = mpc(0,(mpc(0,1) * exp(mpc(0,1) * pi() * tau2)).imag)
			eta2 = -(pi()**2 * jtheta(n=1,z=0,q=q,derivative=3)) / (12 * om2 * jtheta(n=1,z=0,q=q,derivative=1))
			v = (pi() * z) / (2 * om2)
			retval = (2 * om2) / pi() * exp((eta2 * z**2)/(2 * om2)) * jtheta(n=1,z=v,q=q)/jtheta(n=1,z=0,q=q,derivative=1)
		else:
			g2, g3 = self.__invariants
			if g2 == 0 and g3 == 0:
				retval = z
			else:
				c = e1 / 2
				A = sqrt(3 * c)
				retval = (1 / A) * sin(A*z) * exp((c*z**2) / 2)
		if self.__ng3:
			return mpc(0,-1) * retval
		else:
			return retval
	def sigma(self,z):
		# A+S 18.10.
		from mpmath import pi, jtheta, exp, mpc, sqrt, sin
		Delta = self.Delta
		e1, _, _ = self.__roots
		om = self.__periods[0] / 2
		omp = self.__periods[1] / 2
		if self.__ng3:
			z = mpc(0,1) * z
		if Delta > 0:
			tau = omp / om
			q = (exp(mpc(0,1) * pi() * tau)).real
			eta = -(pi()**2 * jtheta(n=1,z=0,q=q,derivative=3)) / (12 * om * jtheta(n=1,z=0,q=q,derivative=1))
			v = (pi() * z) / (2 * om)
			retval = (2 * om) / pi() * exp((eta * z**2)/(2 * om)) * jtheta(n=1,z=v,q=q)/jtheta(n=1,z=0,q=q,derivative=1)
		elif Delta < 0:
			om2 = om + omp
			om2p = omp - om
			tau2 = om2p / (2 * om2)
			q = mpc(0,(mpc(0,1) * exp(mpc(0,1) * pi() * tau2)).imag)
			eta2 = -(pi()**2 * jtheta(n=1,z=0,q=q,derivative=3)) / (12 * om2 * jtheta(n=1,z=0,q=q,derivative=1))
			v = (pi() * z) / (2 * om2)
			retval = (2 * om2) / pi() * exp((eta2 * z**2)/(2 * om2)) * jtheta(n=1,z=v,q=q)/jtheta(n=1,z=0,q=q,derivative=1)
		else:
			g2, g3 = self.__invariants
			if g2 == 0 and g3 == 0:
				retval = z
			else:
				c = e1 / 2
				A = sqrt(3 * c)
				retval = (1 / A) * sin(A*z) * exp((c*z**2) / 2)
		if self.__ng3:
			return mpc(0,-1) * retval
		else:
			return retval
Esempio n. 10
0
def z_eta(u, m):
    """Jacobi eta function (eq 16.31.3, [Abramowitz]_)."""
    q = qfrom(m=m)
    DM = ellipk(m)
    z = mp.pi * u / (2 * DM)
    eta = jtheta(n=1, z=z, q=q)
    return eta
Esempio n. 11
0
def z_eta(u, m):
    """Jacobi eta function (eq 16.31.3, [Abramowitz]_)."""
    q = qfrom(m=m)
    DM = ellipk(m)
    z = mp.pi * u / (2 * DM)
    eta = jtheta(n=1, z=z, q=q)
    return eta
Esempio n. 12
0
def PlotPDF():
    mu = 0.0
    #  sigma_list = np.sqrt([1.0/8.0, 1.0/4.0, 1.0/2.0, 1.0, 2.0, 1000.0])
    sigma_list = np.sqrt([1.0 / 8.0, 1.0 / 4.0, 1.0 / 2.0, 1.0, 2.0])

    data = []
    x = np.linspace(-np.pi, np.pi, 100)
    for sigma in sigma_list:
        tau = 1.0j * sigma**2 / (2.0 * np.pi)
        q = np.exp(1.0j * np.pi * tau)

        mapping = np.frompyfunc(lambda *a: float(mpmath.jtheta(*a)), 3, 1)
        y = 1 / (2.0 * np.pi) * mapping(3, x / 2.0, q)
        data.append(([x, y, "$\sigma = {0}$".format(sigma * sigma)]))

    # TODO(chanwcom) Process the infinity standard deviation case.
    y = 1 / (2.0 * np.pi) * np.ones(np.shape(x))
    data.append(([x, y, "$\sigma = \infty$"]))

    data_list_plot.PlotContinuousData(data)
    plt.axis([-np.pi, np.pi, 0.0, 1.2])
    plt.xlabel('$x$')
    plt.ylabel('Probability Density Function (PDF)')
    fig = plt.gcf()
    fig.savefig("./wrapped_gaussian_pdf.eps")
Esempio n. 13
0
 def testIdentity1(self):
     """eta(t) = 1/sqrt(3) * theta_2(pi/6, q(t/3))"""
     # eta at omega, a third root of unity
     omega = (-1 + mpmath.sqrt(3) * 1j) / 2
     eta3 = ecpp.dedekind(omega, 18)
     theta3 = mpmath.jtheta(2, mpmath.pi / 6, q(
         omega / 3)) / mpmath.sqrt(3)
     self.assertTrue(mpmath.almosteq(theta3, eta3), eta3 - theta3)
Esempio n. 14
0
def DedekindEtaA1(tau):
    ''' Compute the derivative of the Dedekind Eta function for imaginary argument tau. 
        Numerically. '''
    try:
        import mpmath as mp
        mpmath_loaded = True
    except ImportError:
        mpmath_loaded = False
    return 1.0/mp.sqrt(3.0)*mp.jtheta(2,mp.pi/6,mp.exp(-(mp.pi/3.0)*tau))
Esempio n. 15
0
def DedekindEtaA2(tau):
    ''' Compute the derivative of the Dedekind Eta function for imaginary argument tau. 
        Numerically. '''
    try:
        import mpmath as mp
        mpmath_loaded = True
    except ImportError:
        mpmath_loaded = False 
    
    return mp.exp(-mp.pi/12.0)*mp.jtheta(3,mp.pi*(mp.j*tau+1.0)/2.0,mp.exp(-3.0*mp.pi))
Esempio n. 16
0
 def gaussian_total(self,offset):
     factor = mpmath.sqrt(1.0/(self._period*self._tau))
     factor_exponent = -1.0/(2*self._period)
     exponent_factor = mpmath.mpf(offset)*offset
     exponent_interval = self._tau*self._tau
     exponent_offset = 2*self._tau*offset
     factor_full = factor*mpmath.exp(exponent_factor*factor_exponent)
     q = mpmath.exp(factor_exponent*exponent_interval)
     z = factor_exponent*exponent_offset/(2*mpmath.j)
     theta = mpmath.jtheta(3,z,q).real
     return factor_full*theta
Esempio n. 17
0
def sum_gaussian_theta(variance, offset, interval):
    factor = mpmath.sqrt(1.0/(variance*tau))
    factor_exponent=mpmath.mpf(-1.0)/(2*variance)
    exponent_factor = mpmath.mpf(offset)*offset
    factor_full = factor*mpmath.exp(exponent_factor*factor_exponent)
    exponent_interval = interval*interval
    exponent_offset = 2*interval*offset
    q = mpmath.exp(factor_exponent*exponent_interval)
    z = factor_exponent*exponent_offset/(2*mpmath.j)
    theta = mpmath.jtheta(3,z,q)
    return factor_full*theta
Esempio n. 18
0
def DedekindEtaA(tau):
    ''' Alternative definition of the Dedekind Eta function in terms 
        of the Jacobi theta function. 10x faster computation. 
        http://functions.wolfram.com/EllipticFunctions/DedekindEta/27/01/02/'''
    try:
        import mpmath as mp
        mpmath_loaded = True
    except ImportError:
        mpmath_loaded = False 
    
    return mp.cbrt(0.5*mp.jtheta(1,0,mp.exp(-mp.pi*tau),1)) 
	def Ptheta(self,z):
		from mpmath import pi, jtheta, exp, mpc
		e1,e2,e3 = self.__roots
		om,omp,om2,om2p = self.__omegas
		Delta = self.__Delta
		if Delta > 0:
			tau = omp/om
			q = exp(mpc(0,1)*pi*tau)
			v = (pi * z) / (2*om)
			omega = om
			e = e1
		else:
			tau2 = om2p/(2*om2)
			q = mpc(0,1)*exp(mpc(0,1)*pi*tau2)
			v = (pi * z) / (2*om2)
			omega = om2
			e = e2

		retval = e+pi**2/(4*omega*omega)*( jtheta(n=1,z=0,q=q,derivative=1) * jtheta(n=2,z=v,q=q,derivative=0) 
			/ ( jtheta(n=2,z=0,q=q,derivative=0) * jtheta(n=1,z=v,q=q,derivative=0) ) )**2
		return retval
Esempio n. 20
0
def z_eta(u, m):
    r"""
    A function evaluate Jacobi eta function (eq 16.31.3, [Abramowitz]_).

    :param u:    Argument u
    :param m:    m is the elliptic parameter (not the modulus k and not the nome q)
                  
    :rtype:      Returns a float, Jacobi eta function evaluated for the argument `u` and parameter `m`
    """
    q = qfrom(m=m)
    DM = ellipk(m)
    z = mp.pi * u / (2 * DM)
    eta = jtheta(n=1, z=z, q=q)
    return eta
Esempio n. 21
0
def z_eta(u, m):
    r"""
    A function evaluate Jacobi eta function (eq 16.31.3, [Abramowitz]_).

    :param u:    Argument u
    :param m:    m is the elliptic parameter (not the modulus k and not the nome q)
                  
    :rtype:      Returns a float, Jacobi eta function evaluated for the argument `u` and parameter `m`
    """
    q = qfrom(m=m)
    DM = ellipk(m)
    z = mp.pi * u / (2 * DM)
    eta = jtheta(n=1, z=z, q=q)
    return eta
Esempio n. 22
0
 def zeta(self, z):
     # A+S 18.10.
     from mpmath import pi, jtheta, exp, mpc, cot, sqrt
     Delta = self.Delta
     e1, _, _ = self.__roots
     om = self.__periods[0] / 2
     omp = self.__periods[1] / 2
     if self.__ng3:
         z = mpc(0, 1) * z
     if Delta > 0:
         tau = omp / om
         # NOTE: here q has to be real.
         q = (exp(mpc(0, 1) * pi() * tau)).real
         eta = -(pi()**2 * jtheta(n=1, z=0, q=q, derivative=3)) / (
             12 * om * jtheta(n=1, z=0, q=q, derivative=1))
         v = (pi() * z) / (2 * om)
         retval = (eta * z) / om + (pi() *
                                    jtheta(n=1, z=v, q=q, derivative=1)) / (
                                        2 * om * jtheta(n=1, z=v, q=q))
     elif Delta < 0:
         om2 = om + omp
         om2p = omp - om
         tau2 = om2p / (2 * om2)
         # NOTE: here q will be pure imaginary.
         q = mpc(0, (mpc(0, 1) * exp(mpc(0, 1) * pi() * tau2)).imag)
         eta2 = -(pi()**2 * jtheta(n=1, z=0, q=q, derivative=3)) / (
             12 * om2 * jtheta(n=1, z=0, q=q, derivative=1))
         v = (pi() * z) / (2 * om2)
         retval = (eta2 * z) / om2 + (pi() * jtheta(
             n=1, z=v, q=q, derivative=1)) / (2 * om2 *
                                              jtheta(n=1, z=v, q=q))
     else:
         g2, g3 = self.__invariants
         if g2 == 0 and g3 == 0:
             retval = 1 / z
         else:
             c = e1 / 2
             A = sqrt(3 * c)
             retval = c * z + A * cot(A * z)
     if self.__ng3:
         return mpc(0, 1) * retval
     else:
         return retval
Esempio n. 23
0
def genconsts(n=128):
    p = random.choice(list(filter(lambda x: x >= n * n, prime(2 * n * n))))
    #eps = (3.45678910111213141516)
    #m = (1 + eps)*(n + 1)*math.log(p)
    m = 5 * n

    alp = lambda n: 1 / (math.sqrt(n) * math.log(n))

    theta = lambda r: jtheta(3, -math.pi * r,
                             math.exp(-alp(n) * alp(n) * math.pi))

    theta_quad = lambda i: quad(theta, [(i - 0.5) / p, (i + 0.5) / p])

    print("Generating distribution....")
    x_dist = []
    i = 0
    while True:
        if i % (p // 100) == 0:
            print("%s/%s" % (i, p - 1))

        quad_result = theta_quad(i)

        x_dist.append(quad_result)

        if quad_result < 1e-10:
            break

        i += 1

    print("%s/%s" % (p - 1, p - 1))

    x_dist = x_dist + [0] * (p - 2 * len(x_dist) + 1) + list(
        reversed(x_dist[1::]))

    ### priv key
    s = [random.randint(0, p - 1) for i in range(n)]

    ### public key
    a = [[random.randint(0, p - 1) for i in range(n)] for i in range(m)]
    e = random.choices(list(range(p)), weights=x_dist, k=m)
    b = [(dot(a[i], s, p) + e[i]) % p for i in range(m)]

    return (m, a, b, p, s)
	def zeta(self,z):
		# A+S 18.10.
		from mpmath import pi, jtheta, exp, mpc, cot, sqrt
		Delta = self.Delta
		e1, _, _ = self.__roots
		om = self.__periods[0] / 2
		omp = self.__periods[1] / 2
		if self.__ng3:
			z = mpc(0,1) * z
		if Delta > 0:
			tau = omp / om
			# NOTE: here q has to be real.
			q = (exp(mpc(0,1) * pi() * tau)).real
			eta = -(pi()**2 * jtheta(n=1,z=0,q=q,derivative=3)) / (12 * om * jtheta(n=1,z=0,q=q,derivative=1))
			v = (pi() * z) / (2 * om)
			retval = (eta * z) / om + (pi() * jtheta(n=1,z=v,q=q,derivative=1)) / (2 * om * jtheta(n=1,z=v,q=q))
		elif Delta < 0:
			om2 = om + omp
			om2p = omp - om
			tau2 = om2p / (2 * om2)
			# NOTE: here q will be pure imaginary.
			q = mpc(0,(mpc(0,1) * exp(mpc(0,1) * pi() * tau2)).imag)
			eta2 = -(pi()**2 * jtheta(n=1,z=0,q=q,derivative=3)) / (12 * om2 * jtheta(n=1,z=0,q=q,derivative=1))
			v = (pi() * z) / (2 * om2)
			retval = (eta2 * z) / om2 + (pi() * jtheta(n=1,z=v,q=q,derivative=1)) / (2 * om2 * jtheta(n=1,z=v,q=q))
		else:
			g2, g3 = self.__invariants
			if g2 == 0 and g3 == 0:
				retval = 1 / z
			else:
				c = e1 / 2
				A = sqrt(3 * c)
				retval = c*z + A * cot(A*z)
		if self.__ng3:
			return mpc(0,1) * retval
		else:
			return retval
Esempio n. 25
0
    return factor_full*theta


# In[81]:

sum_gaussian(1.0,0.7,tau,100)


# In[82]:

sum_gaussian_theta(1.0,0.7,tau)


# In[3]:

mpmath.jtheta(3,0,mpmath.exp(-1))


# In[5]:

mpmath.sqrt(mpmath.pi)


# In[63]:

def von_Mises_entropy_max():
    return mpmath.ln(2*mpmath.pi)
def von_Mises_entropy_fraction(kappa):
    I0_kappa = mpmath.besseli(0,kappa)
    I1_kappa = mpmath.besseli(1,kappa)
    kappa_entropy = mpmath.ln(2*mpmath.pi*I0_kappa) - kappa*(I1_kappa/I0_kappa)
Esempio n. 26
0
def jt1d(nu, tau):
    return jtheta(1, pi * nu, exp(pi * j * tau), 1)
Esempio n. 27
0
def calc_eta_by_theta(k, z):
    return 0.25 * complex(0, 1) * pi * ((jtheta(2, 0,  qfrom(k=k), 0)) ** 2) \
           * ((jtheta(4, 0,  qfrom(k=k), 0)) ** 2) \
           * (jtheta(3, 0,  qfrom(k=k), 0)) \
           * (jtheta(3, 2*z*pi,  qfrom(k=k), 0)) \
           / ( ((jtheta(1, z*pi,  qfrom(k=k), 0)) ** 2) * ((jtheta(3, z*pi,  qfrom(k=k), 0)) ** 2) )
Esempio n. 28
0
 def arFpDensity(Da, r0a, La, ta):
     D, r0, L, t = (m.mpmathify(str(x)) for x in (Da, r0a, La, ta))
     pref = m.exp(-r0 ** 2 / (4 * D * t)) * D / (4 * m.sqrt(m.pi) * (D * t) ** 1.5)
     z = (1j * L * r0) / (2 * D * t)
     q = m.exp(-L ** 2 / (D * t))
     return float(m.re(2 * pref * (r0 * m.jtheta(4, z, q) - 0 * 1j * L * m.djtheta(4, z, q))))
Esempio n. 29
0
def calc_eta_by_theta(k, z):
    return 0.25 * complex(0, 1) * pi * ((jtheta(2, 0,  qfrom(k=k), 0)) ** 2) \
           * ((jtheta(4, 0,  qfrom(k=k), 0)) ** 2) \
           * (jtheta(3, 0,  qfrom(k=k), 0)) \
           * (jtheta(3, 2*z*pi,  qfrom(k=k), 0)) \
           / ( ((jtheta(1, z*pi,  qfrom(k=k), 0)) ** 2) * ((jtheta(3, z*pi,  qfrom(k=k), 0)) ** 2) )