def d_theta(angle,k_v,R_v,alpha_v,An):
    '''Off-axis level, :math:`D_{\\theta}`, for piston in a sphere
    
    Parameters
    ----------
    angle : mpmath.mpf
        Azimuth/elevation angle in radians
    k_v : mpmath.mpf
        Wavenumber
    alpha: mpmath.mpf   
        Piston equivalent aperture in radians. 
    An : mpmath.matrix
        An is a required pre-calculated matrix which results from the 
        satisfying the conditions of the model - specific to each parameter
        set.
    
    Returns
    -------
    abs(rel_level()) : mpmath.mpf   
        The off-axis value at angle :math:`\theta`
    '''
    num = 4 
    N_v = An.rows
    denom  = (k_v**2)*(R_v**2)*mpmath.sin(alpha_v)**2
    part1 = num/denom
    jn_matrix = mpmath.matrix([I**f for f in range(N_v)])
    legendre_matrix = mpmath.matrix([legendre(n_v, mpmath.cos(angle)) for n_v in range(N_v)])
    Anjn = HP(An,jn_matrix).doit()
    part2_matrix = HP(Anjn,legendre_matrix).doit() 
    part2 = sum(part2_matrix)
    rel_level = lambdify([], -part1*part2, 'mpmath')
    return abs(rel_level())
Esempio n. 2
0
def jac_Diode_In_mpmath(x, b, c, y):
    """
    [Реестровая]
    непосредственная проверка невозможна


    :param x:
    :param b:
    :param c:
    :param y:
    :return:
    """
    global FT
    dfdbMPM = lambda y, x, b, c: mpm.matrix([[
        mpm.exp((-b[2] * y[0] + x[0]) / (FT * b[1])) - 1, -b[0] *
        (-b[2] * y[0] + x[0]) * mpm.exp((-b[2] * y[0] + x[0]) / (FT * b[1])) /
        (FT * b[1]**2), -b[0] * y[0] * mpm.exp((-b[2] * y[0] + x[0]) /
                                               (FT * b[1])) / (FT * b[1])
    ]])
    dfdyMPM = lambda y, x, b, c: mpm.matrix([[
        -1 - b[0] * b[2] * mpm.exp((-b[2] * y[0] + x[0]) / (FT * b[1])) /
        (FT * b[1])
    ]])
    jacf = dfdyMPM(y, x, b, c)**-1 * dfdbMPM(y, x, b, c)
    return jacf
def SL(pts, prec):
	título("Sistema Linear", "=")
	# Definir Precisão
	mm.mp.dps = prec
	nv = len(pts[0])
	pol = []

	# Criar Matriz Polinômio
	matA = []
	matY = []
	for i in range(len(pts[0])):
		matA.append([])
		for g in range(nv):
			matA[i].append(pts[0][i]**g)
		matY.append(pts[1][i])

	# Resolver Matriz
	matA = mm.matrix(matA)
	print("Matriz A")
	print(str(matA))
	matY = mm.matrix(matY)
	print("\nMatriz Y")
	print(str(matY))
	matInvA = matA**-1
	print("\nMatriz Inversa A")
	print(str(matInvA))
	matX = matInvA * matY
	print("\nMatriz X")
	print(str(matX))

	# Transformar Resposta em String Polinômio
	sPol = pol2str(matX)
	print("\nPolinômio: ",sPol)

	return sPol
Esempio n. 4
0
def Newton(pts, prec):
    título("Newton", "=")
    # Definir Precisão
    mm.mp.dps = prec

    nv = len(pts[0])
    matX = pts[0]
    matY = [pts[1]]
    for i in range(1, nv):
        matY.append([])
        for j in range(nv - i):
            matY[i].append((matY[i - 1][j + 1] - matY[i - 1][j]) /
                           (matX[j + i] - matX[j]))

    print("\nTabela\n\n", mm.matrix(matY))

    # matP = [matY[1][0]]
    # for i in range(nv-1):
    # 	mult = 1
    # 	for n in range(i):
    # 		mult *= -matX[n]
    # 	matP.append(mult)

    matX = pts[0]
    matY = pts[1]
    matP = mm.matrix(list(reversed(Polynomial(lagrange(matX, matY)).coef)))

    # Transformar Resposta em String Polinômio
    sPol = pol2str(matP)
    print("\nPolinômio: ", sPol)

    return sPol
Esempio n. 5
0
def cons(o1, p11):
    b = matrix(o1)
    # print('b = ',o)
    c = matrix(p11)
    # print('c = ', c)
    a = b * c
    # print('a = ', a)
    return a
Esempio n. 6
0
def test_poincare_reflect0():
    z = mpm.matrix([[0., 0., 0.5]])
    x = mpm.matrix([[0.1, -0.2, 0.1]])

    assert mpm.norm(poincare_reflect0(z, z)) < TOL

    y = poincare_reflect0(z, x)
    assert mpm.norm(poincare_reflect0(z, y) - x) < TOL
Esempio n. 7
0
def test_poincare_reflect():
    x = mpm.matrix([[0.3, -0.3, 0.0]])
    a = mpm.matrix([[0.5, 0., 0.0]])
    y = poincare_reflect(a, x)

    R = mpm.norm(a)
    r1 = mpm.norm(x - a)
    r2 = mpm.norm(y - a)
    assert R**2 - r1 * r2 < TOL
Esempio n. 8
0
def zero():
    #this function resets the initial position, velocity, and time variables; called when restarting
    global time, s0, v0   
    time = 0
    s0 = matrix([[orbrad['earth']],
                 [0]])

    v0 = matrix([[0],
                 [-30000]])
Esempio n. 9
0
def test_poincare_dist():
    x = mpm.matrix([[0., 0., -0.4]])
    y = mpm.matrix([[0.0, 0.0, 0.1]])
    o = mpm.zeros(1, 3)

    assert poincare_dist(o, y) - poincare_dist0(y) < TOL
    assert poincare_dist(o, x) - poincare_dist0(x) < TOL
    assert poincare_dist(o, x) + poincare_dist(o, y) - poincare_dist(x,
                                                                     y) < TOL
def CF_bounded_Pareto(u, P):
    """
    Use: CF_bounded_Pareto(u, P)

    This function returns the characteristic function of an FPP with exponential
    pulses and bounded Pareto amplitudes [3] as a complex (u.size, 1)-matrix.

    The parameters are:
    gamma, the shape parameter of the distribution,
    alpha, the scale of the Pareto distribution,
    L, the lower bound of the Pareto distribution,
    H, the upper bound of the Pareto distribution.

    Input:
        u: The variable of the characteristic function. .......... 1D np array
        P=[gamma, alpha, L, H]: The parameters of the distribution. ... list

    Output:
        res: the characteristic function. ........ complex (u.size,1) np array

    References:
    [1] A. Theodorsen and O. E. Garcia, PPCF 60 (2018) 034006
        https://doi.org/10.1088/1361-6587/aa9f9c
    [2] O. E. Garcia and A. Theodorsen POP 25 (2018) 014506
        https://doi.org/10.1063/1.5020555
    [3] https://en.wikipedia.org/wiki/Pareto_distribution
    """
    import numpy as np
    import mpmath as mm

    #res = np.zeros([u.size, 1], dtype=complex)

    g_m = mm.mpf(P[0])
    a_m = mm.mpf(P[1])
    L_m = mm.mpf(P[2])
    H_m = mm.mpf(P[3])

    u_m = mm.matrix(-1.j * u)
    C = mm.matrix(u.size, 1)

    def tmp(x, a):
        return -mm.log(x) - mm.gammainc(0, x) + x**a * mm.gammainc(-a, x)

    const_0 = -g_m * (a_m**(-1) + mm.euler)
    const_1 = g_m / (H_m**a_m - L_m**a_m)

    for i in range(u.size):
        if u_m[i] == 0:
            lnC = 0
        else:
            lnCtmp = (H_m**a_m * tmp(L_m * u_m[i], a_m) -
                      L_m**a_m * tmp(H_m * u_m[i], a_m))
            lnC = const_0 + const_1 * lnCtmp
        C[i] = mm.exp(lnC)

    return np.array(C.tolist(), dtype=np.cfloat)
Esempio n. 11
0
 def runTest(self):
     data = {}
     data[1.] = mpmath.matrix([[1., 1.], [1., 1.]])
     data[2.] = mpmath.matrix([[2., 2.], [2., 2.]])
     rk.use_mpmath_types()
     cal = rk.get_asym_calc(cu.rydbergs, [0, 0])
     dmat = rk.get_dmat_from_discrete(rk.Smat, data, cal, "dum2")
     self.assertEqual(nw.mode, nw.mode_mpmath)
     self.assertEqual(nw.dps, nw.dps_default_mpmath)
     for mat in dmat.values():
         nw.shape(mat)  # Will get an exception if types are wrong.
Esempio n. 12
0
def poly_fixed(p,
               a,
               b,
               x_exp,
               bits,
               y_exp=None,
               dtype=numpy.int64,
               epsilon=EPSILON):
    c, shr, exp = poly_fixed_multi(p.transpose(), mpmath.matrix([a]),
                                   mpmath.matrix([b]), x_exp, bits, y_exp,
                                   dtype, epsilon)
    return c[0, :], shr, exp
Esempio n. 13
0
def absposition(planet):
    #this function is used to get the position of all planets other than the earth
    #it is assumed that they are perfectly circular in orbit
    if(planet == 'sun'):
        #the sun is always at the origin
        pos = matrix([[0],
                      [0]])
    else:
        angle = angularvelocity(planet)*time
        pos = matrix([[orbrad[planet]*cos(angle)], 
                      [orbrad[planet]*sin(angle)]])
    return pos
Esempio n. 14
0
def main():

    # Initialise initial conditions

    mpm.dps = 32  # Quadruple precision calculations

    #T = 2. * mpm.mpf(1.657935803684451)
    #x0 = mpm.matrix([1.006057199440406, 0.0, 0.0, 0.022036094262319])

    #x0 = mpm.matrix([1.009433860747752, 0.0, 0.0, 0.003760276142823])
    x0 = mpm.matrix([
        1.0060556387918027, 2.4281528205782993e-06, -8.1318569756237198e-06,
        0.022040604156795093
    ])  # Velocities have been inverted (+ -> -) to spoof reverse time
    # T = mpm.mpf(2 * 3.061660616555952)

    x_des = mpm.matrix([
        1.0039053449563018, 0.0024706864707973696, -0.012281740632575283,
        0.024133313701580495
    ])

    # Call the Taylor integrator

    f = mpm.odefun(PCR3BP, 0.0, x0, tol=1e-30, degree=100, verbose=True)

    #for i in range(4):

    #    print(f(T)[i] - f(0.0)[i])

    print(mpm.pi)

    min_dist = 10.

    with open('output.dat', 'w+') as fiyul:

        for time in mpm.linspace(0., 2 * mpm.pi, 1000):

            temp = f(time)
            distance = mpm.sqrt((temp[0] - x_des[0])**mpm.mpf(2.0) +
                                (temp[1] - x_des[1])**mpm.mpf(2.0))
            print("Distance between desired point: %s" % (distance))

            if distance < min_dist:

                min_dist = distance

            fiyul.write("%s, %s, %s, %s\n" %
                        (temp[0], temp[1], temp[2], temp[3]))

    print("Minimum distance was %s" % min_dist)

    return None
Esempio n. 15
0
def multivariate_normalization(data, variables_size):
    mpmath.mp.dps = 20
    for j in range(0, len(data[0])):
        means = []
        ts_s = []
        for u in range(0, variables_size):
            means.append(numpy.mean(data[u][j]))
            ts_s.append(data[u][j])
        covariance_matrix = mpmath.matrix(numpy.cov(ts_s))
        w, v = mpmath.eig(covariance_matrix)
        diagonal = mpmath.diag(w)

        try:
            result = mpmath.sqrtm(diagonal)
        except ZeroDivisionError as error:
            print("j: ", j)
            print("ts:", ts_s)
            print("not invertible sqrtm")
            print("covariance_matrix:", covariance_matrix)
            sys.exit()

        B = v * result
        try:
            inverse_B = B**-1
        except ZeroDivisionError as error:
            # Not invertible. Skip this one.
            # Non invertable cases Uwave
            print("j: ", j)
            print("ts:", ts_s)
            print("not invertible")
            print("covariance_matrix:", covariance_matrix)
            sys.exit()
        except Exception as exception:
            # Not invertible. Skip this one.
            print("j: ", j)
            print("ts:", ts_s)
            print("not invertible")
            print("covariance_matrix:", covariance_matrix)
            sys.exit()
        for i in range(0, len(data[0][j])):
            atributes_together = []
            for u in range(0, variables_size):
                atributes_together.append(data[u][j][i])
            atributes_together = mpmath.matrix(atributes_together)
            result = atributes_together - mpmath.matrix(means)
            result = inverse_B * result
            for u in range(0, variables_size):
                if type(result[u]) is mpmath.mpc:
                    data[u][j][i] = result[u].real
                else:
                    data[u][j][i] = result[u]
    return data
Esempio n. 16
0
        def g(theta):
            # calculate output of alpha-max-beta-min for each theta-value
            y = utils.poly.eval_multi(p_alpha_cos_beta_sin,
                                      mpmath.matrix(theta))

            # optionally apply some iterations of Newton-Raphson square root
            # this means the alpha, beta will be optimized to return the best
            # error AFTER the Newton-Raphson has been applied at run-time
            for i in range(NEWTON_ITERS):
                y = mpmath.matrix(
                    [.5 * (y[j] + 1. / y[j]) for j in range(y.rows)])

            return y - 1.
Esempio n. 17
0
 def _semicolon(a, b):
     if not isinstance(a, mpmath.matrix):
         a = mpmath.matrix([[a]])
     if not isinstance(b, mpmath.matrix):
         b = mpmath.matrix([[b]])
     assert a.cols == b.cols, 'matrix cols not equal'
     r = mpmath.matrix(a.rows + b.rows, a.cols)
     for j in range(a.cols):
         for i in range(a.rows):
             r[(i, j)] = a[(i, j)]
         for i in range(b.rows):
             r[(i + a.rows, j)] = b[(i, j)]
     return r
Esempio n. 18
0
    def tranformRectangle(self, orignalRectangle, uVector, vVector):
        LeftButton = mpmath.matrix([orignalRectangle[0], orignalRectangle[1]])
        LeftButton = self.tranformCoordinate(LeftButton, uVector, vVector)

        RightUp = mpmath.matrix([orignalRectangle[2], orignalRectangle[3]])
        RightUp = self.tranformCoordinate(RightUp, uVector, vVector)

        Left = min(LeftButton[0], RightUp[0])
        Button = min(LeftButton[1], RightUp[1])
        Right = max(LeftButton[0], RightUp[0])
        Up = max(LeftButton[1], RightUp[1])

        return [Left, Button, Right, Up]
Esempio n. 19
0
def d_theta(angle, k_v, R_v, alpha_v, An):
    num = 4
    N_v = An.rows
    denom = (k_v**2) * (R_v**2) * mpmath.sin(alpha_v)**2
    part1 = num / denom
    jn_matrix = mpmath.matrix([I**f for f in range(N_v)])
    legendre_matrix = mpmath.matrix(
        [legendre(n_v, mpmath.cos(angle)) for n_v in range(N_v)])
    Anjn = HP(An, jn_matrix).doit()
    part2_matrix = HP(Anjn, legendre_matrix).doit()
    part2 = sum(part2_matrix)
    rel_level = lambdify([], -part1 * part2, 'mpmath')
    return abs(rel_level())
Esempio n. 20
0
    def traverseTheHierarchy(self, startingStructureName=None, delegateFunction = None, 
                             transformPath = [], rotateAngle = 0, transFlags = (0,0,0), coordinates = (0,0)):
        #since this is a recursive function, must deal with the default
        #parameters explicitly        
        if startingStructureName == None:
            startingStructureName = self.rootStructureName            

        #set up the rotation matrix        
        if(rotateAngle == None or rotateAngle == ""):
            rotateAngle = 0
        else:
            rotateAngle = math.radians(float(rotateAngle))
        mRotate = mpmath.matrix([[math.cos(rotateAngle),-math.sin(rotateAngle),0.0],
                                 [math.sin(rotateAngle),math.cos(rotateAngle),0.0],[0.0,0.0,1.0],])
        #set up the translation matrix
        translateX = float(coordinates[0])
        translateY = float(coordinates[1])
        mTranslate = mpmath.matrix([[1.0,0.0,translateX],[0.0,1.0,translateY],[0.0,0.0,1.0]])
        #set up the scale matrix (handles mirror X)
        scaleX = 1.0
        if(transFlags[0]):
            scaleY = -1.0
        else:
            scaleY = 1.0
        mScale = mpmath.matrix([[scaleX,0.0,0.0],[0.0,scaleY,0.0],[0.0,0.0,1.0]])
        
        #we need to keep track of all transforms in the hierarchy
        #when we add an element to the xy tree, we apply all transforms from the bottom up
        transformPath += [(mRotate,mScale,mTranslate)]
        if delegateFunction != None:
            delegateFunction(startingStructureName, transformPath)
        #starting with a particular structure, we will recursively traverse the tree
        #********might have to set the recursion level deeper for big layouts!
        if(len(self.structures[startingStructureName].srefs)>0): #does this structure reference any others?
            #if so, go through each and call this function again
            #if not, return back to the caller (caller can be this function)            
            for sref in self.structures[startingStructureName].srefs:
                #here, we are going to modify the sref coordinates based on the parent objects rotation                
#                if (sref.sName.count("via") == 0): 
                self.traverseTheHierarchy(startingStructureName = sref.sName,                                    
                                          delegateFunction = delegateFunction,
                                          transformPath = transformPath,
                                          rotateAngle = sref.rotateAngle,
                                          transFlags = sref.transFlags,
                                          coordinates = sref.coordinates)
#            else:
#                print "WARNING: via encountered, ignoring:", sref.sName
            #MUST HANDLE AREFs HERE AS WELL
        #when we return, drop the last transform from the transformPath
        del transformPath[-1]
        return
Esempio n. 21
0
def sarkar_embedding_3D(tree, root, **kwargs):
    eps = kwargs.get("eps",0.1)
    weighted = kwargs.get("weighted", True)
    tau = kwargs.get("tau")
    max_deg = max(tree.degree)[1]

    if tau is None:
        tau = (1+eps)/eps * mpm.log(2*max_deg/ mpm.pi)
    prc = kwargs.get("precision")
    if prc is None:
        prc = _embedding_precision(tree,root,eps)
    mpm.mp.dps = prc
    
    n = tree.order()
    emb = mpm.zeros(n,3)
    place = []

    # place the children of root
    fib = fib_2D_code(tree.degree[root])
    for i, v in enumerate(tree[root]):
        r = mpm.tanh(tau*tree[root][v].get("weight",1.))
        v_emb = r * mpm.matrix([[fib[i,0],fib[i,1],fib[i,2]]])
        emb[v,:]=v_emb
        place.append((root,v))
    
    while place:
        u, v = place.pop() # u is the parent of v
        u_emb, v_emb = emb[u,:], emb[v,:]

        # reflect and rotate so that embedding(v) is at (0,0,0) 
        # and embedding(u) is in the direction of (0,0,1)
        u_emb = poincare_reflect0(v_emb, u_emb, precision=prc)
        R = rotate_3D_mp(mpm.matrix([[0.,0.,1.]]), u_emb)
        #u_emb = (R.T * u_emb).T

        # place children of v 
        fib = fib_2D_code(tree.degree[v])
        i=0
        for w in tree[v]:
            if w == u: # i=0 is for u (parent of v)
                continue            
            i+=1
            r = mpm.tanh(tau*tree[w][v].get("weight",1.))
            w_emb = r * mpm.matrix([[fib[i,0],fib[i,1],fib[i,2]]])

            #undo reflection and rotation
            w_emb = (R * w_emb.T).T
            w_emb = poincare_reflect0(v_emb, w_emb, precision=prc)
            emb[w,:] = w_emb
            place.append((v,w))
    return emb
Esempio n. 22
0
    def evolution(self, pathways, dt, ddt, stationary=False):
        # print(self.size)
        # eng = matlab.engine.start_matlab()
        rate_matrix = mp.matrix(self.size, self.size)
        species_list = list(self.species.items())
        population_array = mp.matrix([0 for i in range(self.size)])
        # TODO: parallel optimization

        self.timestamp += dt
        time_array = np.arange(0, dt, ddt) + self.timestamp + ddt
        for i in range(self.size):
            diag_i = 0
            population_array[i] = species_list[i][1]
            for j in range(self.size):
                if j == i: continue
                rate_temp = pathways.get_rate(species_list[i][0],
                                              species_list[j][0])
                diag_i += rate_temp
                rate_matrix[i, j] = rate_temp
            rate_matrix[i, i] = -diag_i

        # rate_matrix = matlab.double(rate_matrix)
        # population_array = matlab.double(population_array)

        if stationary:
            intermediate_population_arrays = \
                preprocessing.normalize([[boltzmann_factor(species[0].get_G()) for species in species_list]
                                        for t in time_array], norm='l1', axis=1)

            # intermediate_population_arrays = Propagate_stationary(rate_matrix, population_array, dt, ddt=ddt)
        else:
            '''
            k_fastest = np.max(rate_matrix)
            for i in range(self.size):  # Make it a REAL sparse matrix
                for j in range(self.size):
                    if rate_matrix[i][j] < k_fastest * rate_cutoff:
                        rate_matrix[i][j] = 0
                rate_matrix[i][i] = -np.sum(rate_matrix[i])
            '''
            # Master Equation
            intermediate_population_arrays = Propagate_sp(rate_matrix,
                                                          population_array,
                                                          dt,
                                                          ddt=ddt)
            # TODO: Modify here!
        population_array = intermediate_population_arrays[-1]
        # Remapping
        for i in range(self.size):
            self.update_population(species_list[i][0], population_array[i])

        return species_list, intermediate_population_arrays, time_array
Esempio n. 23
0
 def __init__(self, side, extended, distance):
     self.distance = mp.mpf(distance)
     rightPointX = mp.mpf('1.41949302') if extended else mp.sqrt(2)
     self.side = side  # side length of square
     self.d = side / mp.cos(mp.pi / 12)  # length of left edge
     sin60 = mp.sqrt(3) / 2
     self.top = matrix([self.d / 2, sin60 * self.d])
     self.right = matrix([side * rightPointX, 0])
     self.nleft = matrix([[-sin60, 0.5]])
     self.ndown = matrix([[0, -1]])
     v = self.right - self.top
     norm = mp.norm(v)
     self.nright = matrix([[-v[1] / norm, v[0] / norm]])
     self.offset = self.nright * self.right
Esempio n. 24
0
def solve_lu_mp(A, b):
    """
    Solve a linear system using mpmath

    :param ndarray A: The linear system
    :param ndarray b: The right hand side
    :return: ndarray
    """
    A_mp = mpmath.matrix([list(row) for row in A])
    b_mp = mpmath.matrix([list(row) for row in b])
    x_mp = mpmath.lu_solve(A_mp, b_mp)
    x = numpy.array(x_mp.tolist(), 'f8')

    return x
Esempio n. 25
0
 def reduce_to_fpp(self, z):
     # TODO: need to check what happens here when periods are infinite.
     from mpmath import floor, matrix, lu_solve
     T1, T2 = self.periods
     R1, R2 = T1.real, T2.real
     I1, I2 = T1.imag, T2.imag
     A = matrix([[R1, R2], [I1, I2]])
     b = matrix([z.real, z.imag])
     x = lu_solve(A, b)
     N = int(floor(x[0]))
     M = int(floor(x[1]))
     alpha = x[0] - N
     beta = x[1] - M
     assert (alpha >= 0 and beta >= 0)
     return alpha, beta, N, M
	def reduce_to_fpp(self,z):
		# TODO: need to check what happens here when periods are infinite.
		from mpmath import floor, matrix, lu_solve
		T1, T2 = self.__periods
		R1, R2 = T1.real, T2.real
		I1, I2 = T1.imag, T2.imag
		A = matrix([[R1,R2],[I1,I2]])
		b = matrix([z.real,z.imag])
		x = lu_solve(A,b)
		N = int(floor(x[0]))
		M = int(floor(x[1]))
		alpha = x[0] - N
		beta = x[1] - M
		assert(alpha >= 0 and beta >= 0)
		return alpha,beta,N,M
def iv_matrix_mid_as_mp(M):
    """
    entrywise midpoint of interval matrix,
    as (non-interval) mpmath matrix.

    If the input is a mpmath matrix, it is returned unchanged.
    If the input is a 2-dimensional numpy.ndarray, it is converted to mpmath.
    """
    if isinstance(M, numpy.ndarray):
        return mp.matrix(M)
    Y = mp.matrix(M.rows, M.cols)
    for i in range(M.rows):
        for j in range(M.cols):
            Y[i, j] = mp.mpi(M[i, j]).mid
    return Y
Esempio n. 28
0
    def polish(self, init_shapes, flag_initial_error=True):
        """Use Newton's method to compute precise shapes from rough ones."""
        precision = self._precision
        manifold = self.manifold
        #working_prec = precision + 32
        working_prec = precision + 64
        mpmath.mp.prec = working_prec
        target_epsilon = mpmath.mpmathify(2.0)**-precision
        det_epsilon = mpmath.mpmathify(2.0)**(32 - precision)
        #shapes = [mpmath.mpmathify(z) for z in init_shapes]
        shapes = mpmath.matrix(init_shapes)
        init_equations = manifold.gluing_equations('rect')
        target = mpmath.mpmathify(self.target_holonomy)
        error = self._gluing_equation_error(init_equations, shapes, target)
        if flag_initial_error and error > 0.000001:
            raise GoodShapesNotFound(
                'Initial solution not very good: error=%s' % error)

        # Now begin the actual computation

        eqns = enough_gluing_equations(manifold)
        assert eqns[-1] == manifold.gluing_equations('rect')[-1]
        for i in range(100):
            errors = self._gluing_equation_errors(eqns, shapes, target)
            if infinity_norm(errors) < target_epsilon:
                break
            derivative = [[
                int(eqn[0][i]) / z - int(eqn[1][i]) / (1 - z)
                for i, z in enumerate(shapes)
            ] for eqn in eqns]
            derivative[-1] = [target * x for x in derivative[-1]]
            derivative = mpmath.matrix(derivative)
            #det = derivative.matdet().abs()
            det = abs(mpmath.det(derivative))
            if min(det, 1 / det) < det_epsilon:
                raise GoodShapesNotFound(
                    'Gluing system is too singular (|det| = %s).' % det)
            delta = mpmath.lu_solve(derivative, errors)
            shapes = shapes - delta

        # Check to make sure things worked out ok.
        error = self._gluing_equation_error(init_equations, shapes, target)
        #total_change = infinity_norm(init_shapes - shapes)
        if error > 1000 * target_epsilon:
            raise GoodShapesNotFound('Failed to find solution')
        #if flag_initial_error and total_change > pari(0.0000001):
        #    raise GoodShapesNotFound('Moved too far finding a good solution')
        self.shapelist = [Number(z, precision=precision) for z in shapes]
def makeMeasAccToPlan_lognorm(func, expplan:list, b:list, c:dict, Ve=[], n=1, outfilename="", listOfOutvars=None):
    """
        MPMATH+CAPABLE

    :param func: векторная функция
    :param expplan: план эксперимента (список значений вектора x)
    :param b: вектор b
    :param c: вектор c
    :param Ve: ковариационная матрица (np.array)
    :param n: объём выборки y
    :param outfilename: имя выходного файла, куда писать план
    :param listOfOutvars: список выносимых переменных
    :return: список экспериментальных данных в формате списка словарей 'x':..., 'y':...
    """
    res = list()

    for i in range(len(expplan)):
        y=makeMeasOneDot_lognorm(func, expplan[i], b, c, Ve)

        if y is None: #если функция вернула чушь, то в measdata её не записывать!
            continue

        res.append({'x':mpm.matrix(expplan[i]), 'y':y})
        #res.append({'x':expplan[i], 'y':y})



    return res
def dfdb (y,x,b,c):

    global FT,XO,XT,XF

    ft=FT

    v=x[0]
    i=y[0]

    iss=IS=b[0]
    n=N=b[1]
    ikf=IKF=b[2]
    isr=ISR=b[3]
    nr=NR=b[4]
    vj=VJ=b[5]
    m=M=b[6]
    rs=RS=b[7]

    #ещё раз: ВСЕ константы должны быть в перспективе либо глобальными переменными, как FT, либо составляющими вектора c, но он кривой, потому лучше уж глобальными.

    return mpm.matrix ([[iss*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(-mpm.exp((-i*rs + v)/(ft*n)) + XO)*(mpm.exp((-i*rs + v)/(ft*n)) - XO)/(XT*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))) + mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(mpm.exp((-i*rs + v)/(ft*n)) - XO),
                         iss**XT*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(-i*rs + v)*(mpm.exp((-i*rs + v)/(ft*n)) - XO)*mpm.exp((-i*rs + v)/(ft*n))/(XT*ft*n**XT*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))) - iss*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(-i*rs + v)*mpm.exp((-i*rs + v)/(ft*n))/(ft*n**XT),
                        iss*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))*(-ikf/(XT*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))**XT) + XO/(XT*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))))*(mpm.exp((-i*rs + v)/(ft*n)) - XO)/ikf,
                         ((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*(mpm.exp((-i*rs + v)/(ft*nr)) - XO),
                         -isr*(-i*rs + v)*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*mpm.exp((-i*rs + v)/(ft*nr))/(ft*nr**XT),
                        isr*m*(XO - (-i*rs + v)/vj)*(-i*rs + v)*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*(mpm.exp((-i*rs + v)/(ft*nr)) - XO)/(vj**XT*((XO - (-i*rs + v)/vj)**XT + XF)),
                         isr*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*(mpm.exp((-i*rs + v)/(ft*nr)) - XO)*mpm.log((XO - (-i*rs + v)/vj)**XT + XF)/XT,
                         i*iss**XT*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(mpm.exp((-i*rs + v)/(ft*n)) - XO)*mpm.exp((-i*rs + v)/(ft*n))/(XT*ft*n*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))) - i*iss*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*mpm.exp((-i*rs + v)/(ft*n))/(ft*n)+ \
                         i*isr*m*(XO - (-i*rs + v)/vj)*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*(mpm.exp((-i*rs + v)/(ft*nr)) - XO)/(vj*((XO - (-i*rs + v)/vj)**XT + XF)) - i*isr*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*mpm.exp((-i*rs + v)/(ft*nr))/(ft*nr)
                        ]])
def test_gth_solve_high_prec():
    n = 1e-100
    with mp.workdps(100):
        P = mp.matrix([[-3*(mp.exp(n)-1), 3*(mp.exp(n)-1)],
                       [mp.exp(n)-1     , -(mp.exp(n)-1) ]])

    run_gth_solve(P, verbose=VERBOSE)
def test_stoch_eig_high_prec():
    n = 1e-100
    with mp.workdps(100):
        P = mp.matrix([[1-3*(mp.exp(n)-1), 3*(mp.exp(n)-1)],
                       [mp.exp(n)-1      , 1-(mp.exp(n)-1)]])

    run_stoch_eig(P, verbose=VERBOSE)
def countNMpmath(A, b, bstart, bend):
    N = mpm.matrix(len(b), len(b))
    for j in range(len(b)):
        partone = mpm.mpf(2) * A[j, 0] / (b[j] - bstart[j])**mpm.mpf(3)
        parttwo = mpm.mpf(2) * A[j, 1] / (bend[j] - b[j])**mpm.mpf(3)
        N[j, j] += parttwo + partone  #так как матрица нулевая
    return N
Esempio n. 34
0
    def vawe_func_plot(self, Energy):

        x_min = min(self.structure_width_vector)
        #x_max = max(self.structure_width_vector)
        x = np.linspace(x_min, self.x_max, 150)
        U = np.zeros_like(x)

        for ind in range(len(x)):
            U[ind] = self.U(x[ind])

        v_F_vector = mp.matrix(len(Energy), len(x))

        for energy in range(len(Energy)):
            for ind in range(len(x)):
                v_F_vector[energy,
                           ind] = self.vawe_function(x[ind], Energy[energy])

        plt.plot(x / 10**(-7), U, color='k', linestyle='--', linewidth=1)
        for energy in range(len(Energy)):
            plt.plot(x / 10**(-7), v_F_vector[energy, :], linewidth=2)

        plt.ylabel(r'$\Psi_{k}(x),  U(x)$')
        plt.xlabel(r'$x,10^{-9} м$')

        plt.show()
Esempio n. 35
0
File: mpmat.py Progetto: zholos/qml
def test_msvd():
    output("""\
    msvd_:{[b;x]
        $[3<>count usv:.qml.msvd x;::;
          not (.qml.mdim[u:usv 0]~2#d 0) and (.qml.mdim[v:usv 2]~2#d 1) and
            .qml.mdim[s:usv 1]~d:.qml.mdim x;::;
          not mortho[u] and mortho[v] and
            all[0<=f:.qml.mdiag s] and mzero s _'til d 0;::;
          not mzero x-.qml.mm[u] .qml.mm[s] flip v;::;
          b;1b;(p*/:m#/:u;m#m#/:s;
              (p:(f>.qml.eps*f[0]*max d)*1-2*0>m#u 0)*/:(m:min d)#/:v)]};""")

    for A in subjects:
        U, S, V = map(mp.matrix, mp.svd(mp.matrix(A)))
        m = min(A.rows, A.cols)
        p = mp.diag([mp.sign(s * u) for s, u in zip(mp.chop(S), U[0, :])])
        U *= p
        S = mp.diag(S)
        V = V.T * p
        test("msvd_[0b", A, (U, S, V))

    reps(250)
    for Aq in large_subjects:
        test("msvd_[1b", qstr(Aq), qstr("1b"))
    reps(10000)
def countNMpmath (A, b, bstart, bend):
    N=mpm.matrix(len(b),len(b))
    for j in range (len(b)):
        partone=mpm.mpf(2)*A[j,0]/(b[j]-bstart[j])**mpm.mpf(3)
        parttwo=mpm.mpf(2)*A[j,1]/(bend[j]-b[j])**mpm.mpf(3)
        N[j,j]+=parttwo+partone #так как матрица нулевая
    return N
def solver_Diode_In_mpmath (x,b,c=None):
    """
    [Реестровая] +
    :param x:
    :param b:
    :param c:
    :return:
    """
    global numnone
    global FT
    #первая часть решения: находим корень с небольшой точностью через numpy
    dfdy=lambda y,x,b,c=None: np.array ([[ -1 - b[0]*b[2]*math.exp((-b[2]*y[0] + x[0])/(FT*b[1]))/(FT*b[1])]])
    func = lambda y,x,b,c: [np.float(x) for x in func_Diode_In_mpmath(y,x,b,c)]
    solvinit=[0.5]
    try:
        #solx=optimize.root(func, solvinit, args=(x,b,c), jac=dfdy, method='lm').x
        solx=optimize.root(func, solvinit, args=(x,b,c), method='lm').x
        #http://stackoverflow.com/questions/2566412/find-nearest-value-in-numpy-array
        #http://codereview.stackexchange.com/questions/28207/is-this-the-fastest-way-to-find-the-closest-point-to-a-list-of-points-using-nump
    except BaseException as e:
        numnone+=1
        print ("solver: ERROR: "+e.__str__())
        return [None]

    #вторая часть решения: находим корень с увеличенной  точностью через mpmath
    funcMPM = lambda y:  func_Diode_In_mpmath ([y],x,b,c)
    dfdyMPM=lambda y: mpm.matrix ([[ -1 - b[0]*b[2]*mpm.exp((-b[2]*[y][0] + x[0])/(FT*b[1]))/(FT*b[1])]])
    solvinitMPM=solx[0]
    try:
        precsolx=mpm.calculus.optimization.findroot(mpm.mp, f=funcMPM, x0=solvinitMPM, solver=MDNewton, multidimensional=True, J=dfdyMPM, verify=False)
    except BaseException as e:
        numnone+=1
        print ("solver MPM: ERROR: "+e.__str__())
        return [None]
    return precsolx
def dfdy (y,x,b,c):

    global FT,XO,XT,XF

    ft=FT

    v=x[0]
    i=y[0]

    iss=IS=b[0]
    n=N=b[1]
    ikf=IKF=b[2]
    isr=ISR=b[3]
    nr=NR=b[4]
    vj=VJ=b[5]
    m=M=b[6]
    rs=RS=b[7]

    #fh = iss**mpm.mpf(2)*rs*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - mpm.mpf(1))))*(mpm.exp((-i*rs + v)/(ft*n)) - mpm.mpf(1))*mpm.exp((-i*rs + v)/(ft*n))/(mpm.mpf(2)*ft*n*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - mpm.mpf(1)))) - iss*rs*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - mpm.mpf(1))))*mpm.exp((-i*rs + v)/(ft*n))/(ft*n)
    #sh = isr*m*rs*(mpm.mpf(1) - (-i*rs + v)/vj)*((mpm.mpf(1) - (-i*rs + v)/vj)**mpm.mpf(2) + mpm.mpf('0.005'))**(m/mpm.mpf(2))*(mpm.exp((-i*rs + v)/(ft*nr)) - mpm.mpf(1))/(vj*((mpm.mpf(1) - (-i*rs + v)/vj)**mpm.mpf(2) + mpm.mpf('0.005'))) - isr*rs*((mpm.mpf(1) - (-i*rs + v)/vj)**mpm.mpf(2) + mpm.mpf('0.005'))**(m/mpm.mpf(2))*mpm.exp((-i*rs + v)/(ft*nr))/(ft*nr)

    fh = iss**XT*rs*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*(mpm.exp((-i*rs + v)/(ft*n)) - XO)*mpm.exp((-i*rs + v)/(ft*n))/(XT*ft*n*(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO))) - iss*rs*mpm.sqrt(ikf/(ikf + iss*(mpm.exp((-i*rs + v)/(ft*n)) - XO)))*mpm.exp((-i*rs + v)/(ft*n))/(ft*n)
    sh = isr*m*rs*(XO - (-i*rs + v)/vj)*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*(mpm.exp((-i*rs + v)/(ft*nr)) - XO)/(vj*((XO - (-i*rs + v)/vj)**XT + XF)) - isr*rs*((XO - (-i*rs + v)/vj)**XT + XF)**(m/XT)*mpm.exp((-i*rs + v)/(ft*nr))/(ft*nr)

    return mpm.matrix ([[fh+sh]])
Esempio n. 39
0
def numerical_coeffs(Mn, n, dict_ss):
    """Numerical coefficients of polynomial of order (n - 3)! obtianed from determinant of elimination theory matrix."""
    Mn = Mn.tolist()
    Mn = [[_zs_sub(_ss_sub(str(entry))) for entry in line] for line in Mn]
    zs = punctures(n)

    values = [
        mpmath.e**(2 * mpmath.pi * 1j * j / (math.factorial(n - 3) + 1))
        for j in range(math.factorial(n - 3) + 1)
    ]

    A = [[
        value**exponent for exponent in range(math.factorial(n - 3) + 1)[::-1]
    ] for value in values]
    b = []

    for i, value in enumerate(values):
        dict_zs = {
            str(zs[-2]): value,
            str(zs[-3]): 1
        }  # noqa --- used in eval function
        nMn = mpmath.matrix([[eval(entry, None) for entry in line]
                             for line in Mn])
        b += [mpmath.det(nMn)]

    return mpmath.lu_solve(A, b).T.tolist()[0]
def test_gth_solve_iv():
    P = mp.iv.matrix([[-0.1, 0.075, 0.025],
                      [0.15, -0.2 , 0.05 ],
                      [0.25, 0.25 , -0.5 ]])
    x_expected = mp.matrix([[0.625, 0.3125, 0.0625]])
    x_iv = mp.iv.gth_solve(P)
    for value, interval in zip(x_expected, x_iv):
        assert value in interval
def test_stoch_eig_iv():
    P = mp.iv.matrix([[0.9 , 0.075, 0.025],
                      [0.15, 0.8  , 0.05 ],
                      [0.25, 0.25 , 0.5  ]])
    x_expected = mp.matrix([[0.625, 0.3125, 0.0625]])
    x_iv = mp.iv.stoch_eig(P)
    for value, interval in zip(x_expected, x_iv):
        assert value in interval
Esempio n. 42
0
def QSdiagonalise(mat):
    if QSMODE == MODE_NORM:
        w, v = np.linalg.eig(mat)
        P = np.transpose(np.matrix(v, dtype=np.complex128))
        return np.dot(P, np.dot(mat, np.linalg.inv(P)))
    else:
        w, v = mpmath.eig(mat)
        P = mpmath.matrix(v).T
        return P * mat * P**-1
Esempio n. 43
0
def QSatanElements(mat):
    if QSMODE == MODE_NORM:
        return np.arctan(mat)
    else:
        at = mpmath.matrix(mat.rows, mat.cols)
        for i in range(mat.rows):
            for j in range(mat.cols):
                at[i,j] = mpmath.atan(mat[i,j])
        return at
Esempio n. 44
0
def ufrac_to_ucart(A, cell, uvals):
    U11, U22, U33, U23, U13, U12 = uvals
    U21 = U12
    U32 = U23
    U31 = U13
    Uij = mpm.matrix([[U11, U12, U13], [U21, U22, U23], [U31, U32, U33]])
    a, b, c, alpha, beta, gamma = cell
    V = vol_unitcell(*cell)
    # calculate reciprocal lattice vectors:
    astar = (b * c * sin(radians(alpha))) / V
    bstar = (c * a * sin(radians(beta))) / V
    cstar = (a * b * sin(radians(gamma))) / V
    # matrix with the reciprocal lattice vectors:
    N = mpm.matrix([[astar, 0, 0],
                    [0, bstar, 0],
                    [0, 0, cstar]])
    # Finally transform Uij values from fractional to cartesian axis system:
    Ucart = A * N * Uij * N.T * A.T
    return Ucart
def jac_Diode_In_mpmath (x,b,c,y):
    """
    [Реестровая]
    непосредственная проверка невозможна


    :param x:
    :param b:
    :param c:
    :param y:
    :return:
    """
    global FT
    dfdbMPM=lambda y,x,b,c: mpm.matrix( [ [mpm.exp((-b[2]*y[0] + x[0])/(FT*b[1])) - 1,
                                          -b[0]*(-b[2]*y[0] + x[0])*mpm.exp((-b[2]*y[0] + x[0])/(FT*b[1]))/(FT*b[1]**2),
                                          -b[0]*y[0]*mpm.exp((-b[2]*y[0] + x[0])/(FT*b[1]))/(FT*b[1])]     ])
    dfdyMPM=lambda y,x,b,c: mpm.matrix ([[ -1 - b[0]*b[2]*mpm.exp((-b[2]*y[0] + x[0])/(FT*b[1]))/(FT*b[1])]])
    jacf=dfdyMPM(y,x,b,c)**-1 * dfdbMPM(y,x,b,c)
    return jacf
Esempio n. 46
0
def test_nstr():
    m = matrix([[0.75, 0.190940654, -0.0299195971],
                [0.190940654, 0.65625, 0.205663228],
                [-0.0299195971, 0.205663228, 0.64453125e-20]])
    assert nstr(m, 4, min_fixed=-inf) == \
    '''[    0.75  0.1909                    -0.02992]
[  0.1909  0.6563                      0.2057]
[-0.02992  0.2057  0.000000000000000000006445]'''
    assert nstr(m, 4) == \
    '''[    0.75  0.1909   -0.02992]
Esempio n. 47
0
 def _readCoefficientsForFit(self, fit, ci, typeString):
     fileName = self.resultFileHandler.getCoeffFileName(fit, ci, typeString)
     if QSMODE == MODE_NORM:
         return np.asmatrix(np.loadtxt(fileName, dtype=np.complex128, delimiter=","))
     else:
         f = open( fileName, "r" )
         s1 = f.read()
         l1 = s1.split("\n")
         l2 = [self._splitmpRows(s) for s in l1]
         l3 = [map(lambda s:s.replace("[","").replace("]","").replace("[","").replace(")",""),l) for l in l2]
         return mpmath.matrix(l3)
Esempio n. 48
0
 def orthogonal_matrix(self):
     """
     Converts von fractional to cartesian.
     Invert the matrix to do the opposite.
     """
     import mpmath as mpm
     Am = mpm.matrix([[self.a, self.b * cos(self.gamma), self.c * cos(self.beta)],
                      [0, self.b * sin(self.gamma),
                       (self.c * (cos(self.alpha) - cos(self.beta) * cos(self.gamma)) / sin(self.gamma))],
                      [0, 0, self.V / (self.a * self.b * sin(self.gamma))]])
     return Am
def diodeResistorIMPLICITJac(x, b, c, y):
    FT = 0.02586419  # подогнанное по pspice

    dfdb = lambda y, x, b, c: mpm.matrix(
        [
            [
                math.exp((-b[2] * y[0] + x[0]) / (FT * b[1])) - 1,
                -b[0] * (-b[2] * y[0] + x[0]) * math.exp((-b[2] * y[0] + x[0]) / (FT * b[1])) / (FT * b[1] ** 2),
                -b[0] * y[0] * math.exp((-b[2] * y[0] + x[0]) / (FT * b[1])) / (FT * b[1]),
            ]
        ]
    )

    dfdy = lambda y, x, b, c: mpm.matrix(
        [-1 - b[0] * b[2] * math.exp((-b[2] * y[0] + x[0]) / (FT * b[1])) / (FT * b[1])]
    )

    # возвращает структурную матрицу
    # jacf=lambda x,b,c,y: jjacf(x,b,c,y,dfdb,dfdy)

    jacf = (dfdy(y, x, b, c) ** -1) * dfdb(y, x, b, c)

    return jacf
Esempio n. 50
0
File: mpmat.py Progetto: zholos/qml
def test_mev():
    output("""\
    reim:{$[0>type x;1 0*x;2=count x;x;'`]};
    mc:{((x[0]*y 0)-x[1]*y 1;(x[0]*y 1)+x[1]*y 0)};
    mmc:{((.qml.mm[x 0]y 0)-.qml.mm[x 1]y 1;(.qml.mm[x 0]y 1)+.qml.mm[x 1]y 0)};
    mev_:{[b;x]
        if[2<>count wv:.qml.mev x;'`length];
        if[not all over prec>=abs
            mmc[flip vc;flip(flip')(reim'')flip x]-
            flip(w:reim'[wv 0])mc'vc:(flip')(reim'')(v:wv 1);'`check];
        / Normalize sign; LAPACK already normalized to real
        v*:1-2*0>{x a?max a:abs x}each vc[;0];
        (?'[prec>=abs w[;1];w[;0];w];?'[b;v;0n])};""")

    for A in eigenvalue_subjects:
        if A.rows <= 3:
            V = []
            for w, n, r in A.eigenvects():
                w = sp.simplify(sp.expand_complex(w))
                if len(r) == 1:
                    r = r[0]
                    r = sp.simplify(sp.expand_complex(r))
                    r = r.normalized() / sp.sign(max(r, key=abs))
                    r = sp.simplify(sp.expand_complex(r))
                else:
                    r = None
                V.extend([(w, r)]*n)
            V.sort(key=lambda (x, _): (-abs(x), -sp.im(x)))
        else:
            Am = mp.matrix(A)
            # extra precision for complex pairs to be equal in sort
            with mp.extradps(mp.mp.dps):
                W, R = mp.eig(Am)
            V = []
            for w, r in zip(W, (R.column(i) for i in range(R.cols))):
                w = mp.chop(w)
                with mp.extradps(mp.mp.dps):
                    _, S, _ = mp.svd(Am - w*mp.eye(A.rows))
                if sum(x == 0 for x in mp.chop(S)) == 1:
                    # nullity 1, so normalized eigenvector is unique
                    r /= mp.norm(r) * mp.sign(max(r, key=abs))
                    r = mp.chop(r)
                else:
                    r = None
                V.append((w, r))
            V.sort(key=lambda (x, _): (-abs(x), -x.imag))
        W, R = zip(*V)
        test("mev_[%sb" % "".join("0" if r is None else "1" for r in R), A,
             (W, [r if r is None else list(r) for r in R]), complex_pair=True)
Esempio n. 51
0
    def solve(cls, left_mat, right_mat):
        """Solve ``Ax = b`` for ``x``.

        ``A`` is given by ``left_mat`` and ``b`` by ``right_mat``.

        This method seeks to mirror
        :meth:`mpmath.matrices.linalg.LinearAlgebraMethods.lu_solve`,
        which uses
        :meth:`mpmath.matrices.linalg.LinearAlgebraMethods.LU_decomp`,
        :meth:`mpmath.matrices.linalg.LinearAlgebraMethods.L_solve` and
        :meth:`mpmath.matrices.linalg.LinearAlgebraMethods.U_solve`. Due
        to limitations of :mod:`mpmath` we use modified helpers to
        accomplish the upper- and lower-triangular solves. We also cache
        the LU-factorization for future uses.

        It's worth pointing out that :func:`numpy.linalg.solve` works in
        exactly this fashion. From the `C source`_ there is a
        ``lapack_func`` that gets defined and is eventually used
        `in Python`_ as ``gufunc``. Notice that the ``lapack_func`` is
        ``dgesv`` for doubles. Checking the `LAPACK docs`_ verifies
        the ``dgesv`` does an LU and then two triangular solves.

        .. _C source: https://github.com/numpy/numpy/blob/\
                      4123a2d55c353e71f665712b4de578f933bd4135/numpy/\
                      linalg/umath_linalg.c.src#L1579
        .. _in Python: https://github.com/numpy/numpy/blob/\
                       4123a2d55c353e71f665712b4de578f933bd4135/\
                       numpy/linalg/linalg.py#L384
        .. _LAPACK docs: http://www.netlib.org/lapack/explore-html/d7/d3b/\
                         group__double_g_esolve.html\
                         #ga5ee879032a8365897c3ba91e3dc8d512
        """
        left_mat_id = id(left_mat)
        if left_mat_id not in cls._solve_lu_cache:
            # left_mat is a NumPy matrix, so must first be
            # converted to a mpmath matrix.
            lu_parts, pivots = mpmath.mp.LU_decomp(
                mpmath.matrix(left_mat.tolist()))
            # Convert back to a NumPy matrix.
            lu_parts = np.array(lu_parts.tolist())
            cls._solve_lu_cache[left_mat_id] = lu_parts, pivots

        lu_parts, pivots = cls._solve_lu_cache[left_mat_id]
        solution = _forward_substitution(lu_parts, right_mat, pivots)
        solution = _back_substitution(lu_parts, solution)
        return solution
def makeAinitMpmath (bstart, bend, Skbinit, binit, isBinitGood=True):
    """
    расчёт ведётся по правилу "binit есть хорошее предположение в рамках области"
    :param bstart:
    :param bend:
    :param Skbinit:
    :param binit:
    :return:
    """
    A=mpm.matrix( len(binit), 2 )

    for i in range (len(binit)):
        if isBinitGood:
            A[i,0] = mpm.mpf('0.001')*(binit[i]-bstart[i])*Skbinit
            A[i,1] = mpm.mpf('0.001')*(bend[i]-binit[i])*Skbinit
        else:
            A[i,0] = A[i,1] = mpm.mpf('0.001')*(bend[i]-bstart[i])*Skbinit  #универсально
    return A
Esempio n. 53
0
	def __init__(self, screen, placement = (0, 0), scene_dimensions = None, bg_color = (100, 100, 100)):
		self._world = None
		#the target screen which the final image of the screen is blitted onto
		self.screen = screen
		#the placement of the final image of the scene on the screen defaults to the top left corner
		#these are screen coordinates
		self.screen_placement = placement
                self.scr_t = mp.matrix([[1, 0, placement[X]],
                                        [0, 1, placement[Y]],
                                        [0, 0,            1]])
		
		#Scene is a surface which everything in the world is blitted onto
		if not scene_dimensions:
			#the scene's width and height defaults to the width and height of the screen
			scene_dimensions = (screen.get_width(), screen.get_height())
		
		self.scene = pygame.Surface(scene_dimensions)
		self.scene_rect = self.scene.get_rect()
		
		#the placement of the viewport in terms of global coordinates
		self.scene_placement = (0, 0)
		self.scene_scale = 1
		
		self.bg_color = bg_color
Esempio n. 54
0
	def global_to_map(self, global_coordinates):
		"""
		Maps global coordinates to map coordinates. Mainly used to tell which 
		voxel the mouse pointer is on. Implementation based on article:
                http://www.alcove-games.com/advanced-tutorials/isometric-tile-picking/
		"""
		(gx, gy) = global_coordinates
		
                #depth info comes from the currently activated layer
                mz = self._active_layer
                
                #turn the global coordinates into a homogenous vector
                g_coord = mp.matrix([[gx], 
                                     [gy + mz * self._voxel_dimensions[DEPTH]], 
                                     [1]])
                
                #Apply the isometric unprojection matrix from common_util
                g_coord = UNPROJECT * g_coord
                
                #divide and round the coordinates to get integer indexes.
		mx = int(mp.nint(g_coord[X]) / self._side_length)
                my = int(mp.nint(g_coord[Y]) / self._side_length)
		
		return (mx, my, mz)
Esempio n. 55
0
def apply_dephasing(number_of_spins, alpha, B,fm_str = 'AFM',kT = 0.0):
    '''
    takes number of spins, alpha, and the magnetic field and returns the
    hamiltonian along with its ground state and the dephased ground state
    choose fm_str = 'FM' for ferromagnetic interaction, and 'AFM' for anti-ferromagnetic 
    '''
    if fm_str == 'FM':
        calc = ising_calculator_FM(number_of_spins, alpha, B)
    elif fm_str == 'AFM':
        calc = ising_calculator_AFM(number_of_spins, alpha, B)
    H = calc.get_H()
    if kT == 0.0:
        energy,groundstate = H.groundstate()
        dm_groundstate = ket2dm(groundstate)
    else:
        Hdata = H.data.todense()
        arr_mp = mp.matrix(-Hdata /kT)
        exp_mp = mp.expm(arr_mp)
        trace = np.array(exp_mp.tolist()).trace()
        normalized_mp = exp_mp / trace
        normalized_np = np.array(normalized_mp.tolist(), dtype = np.complex)
        dm_groundstate = Qobj(normalized_np, dims = 2 * [number_of_spins*[2]])
    dephased = do_dephasing_dm(dm_groundstate, number_of_spins)
    return H, dm_groundstate, dephased
Esempio n. 56
0
def QSmatrix(val):
    if QSMODE == MODE_NORM:
        return np.matrix(val, dtype=np.complex128)
    else:
        return mpmath.matrix(val)
Esempio n. 57
0
 def __init__(self,rang=10,acc=100):
 # Generates the coefficients of Legendre polynomial of n-th order.
 # acc is the number of decimal characters of the coefficients.
 # self.cf is the list with coefficients.
 self.rang = rang
 self.acc = mp.dps = acc
 cn = mpf(0.0)
 k = mpf(0)
 n = mpf(rang)
 m = mpf(n/2)
 cf = []
 for k in range(n+1):
 cn = (-
1)**(n+k)*factorial(n+k)/(factorial(nk)*factorial(k)*factorial(k))

 cf.append(cn)
 cf.reverse()
 # Generates the coefficients of of the
implicit Runge-Kutta scheme of Gauss-Legendre type.
 # acc is the number of the decimal
characters of the coefficients.
 # Gives back the cortege (r,b,a), the terms
of which correspond to Butcher scheme
 #
 # r1 | a11 . . . а1n
 # . | . .
 # . | . .
 # . | . .
 # rn | an1 . . . ann
 # ---+--------------
 # | b1 . . . bn
 self.r = polyroots(cf)
 A1 = matrix(rang)
 for j in range(n):
 for k in range(n):
 A1[k,j] = self.r[j]**k
 bn = []
 for j in range(n):
 bn.append(mpf(1.0)/mpf(j+1))
 B = matrix(bn)
 self.b = lu_solve(A1,B)
 self.a = matrix(rang)
 for i in range(1,n+1):
 A1 = matrix(rang)
 cil = []
 for l in range(1,n+1):
 cil.append(mpf(self.r[i-
1])**l/mpf(l))
 for j in range(n):
 A1[l-1,j] = self.r[j]**(l-1)
 Cil = matrix(cil)
 an = lu_solve(A1,Cil)
 for k in range(n):
 self.a[i-1,k] = an[k]
 def init(self,f,t,h,initvalues):
 self.size = len(initvalues)
 self.f = f
31
 self.t = t
 self.h = h
 self.yb = matrix(initvalues)
 self.ks = matrix(self.size,self.rang)
 for k in range(self.size):
 for i in range(self.rang):
 self.ks[k,i] = self.r[i]
 self.tn = matrix(1,self.rang)
 for i in range(self.rang):
 self.tn[i] = t + h*self.r[i]
 self.y = matrix(self.size,self.rang)
 for k in range(self.size):
 for i in range(self.rang):
 self.y[k,i] = self.yb[k]
 temp = mpf(0.0)
 for j in range(self.rang):
 temp += self.a[i,j]*self.ks[k,j]
 self.y[k,i] += temp
 self.yn = matrix(self.yb)

 def iterate(self,tn,y,yn,ks):
 # Generates the coefficients of the implicit
Runge-Kutta scheme for the given step
 # with the method of the simple iteration
with an initial value, coinciding with the coefficients,
 # calculated at the previous step. At
sufficiently small step this must
 # work. There exists such a value of the
step, Under which convergence is guaranteed.
 # No automatic re-setup of the step is
foreseen in this procedure.
 mp.dps = self.acc
 y0 = matrix(yn)
 norme = mpf(1.0)
 #eps0 = pow(eps,mpf(3.0)/mpf(4.0))
 eps0 = sqrt(eps)
 ks1 = matrix(self.size,self.rang)
 yt = matrix(1,self.size)
 count = 0
 while True:
 count += 1
 for i in range(self.rang):
 for k in range(self.size):
 yt[k] = y[k,i]
 for k in range(self.size):
 ks1[k,i] = self.f(tn,yt)[k]
 norme = mpf(0.0)
2
 for k in range(self.size):
 for i in range(self.rang):
 norme += (ks1[k,i]-
ks[k,i])*(ks1[k,i]-ks[k,i])
 norme = sqrt(norme)
 for k in range(self.size):
 for i in range(self.rang):
 ks[k,i] = ks1[k,i]
 for k in range(self.size):
 for i in range(self.rang):
 y[k,i] = y0[k]
 for j in range(self.rang):
 y[k,i] +=
self.h*self.a[i,j]*ks[k,j]
 if norme <= eps0:
 break
 if count >= 100:
 print unicode('No convergence','UTF-8')
 exit(0)
 return ks1
 def step(self):
 mp.dps = self.acc
 self.ks =
self.iterate(self.tn,self.y,self.yn,self.ks)
 for k in range(self.size):
 for i in range(self.rang):
 self.yn[k] +=
self.h*self.b[i]*self.ks[k,i]
 for k in range(self.size):
 for i in range(self.rang):
 self.y[k,i] = self.yn[k]
 for j in range(self.rang):
 self.y[k,i] +=
self.a[i,j]*self.ks[k,j]
 self.t += self.h
 for i in range(self.rang):
 self.tn[i] = self.t + self.h*self.r[i]
 return self.yn
Esempio n. 58
0
def convert_mpmath_mat( M):
	return mpmath.matrix([i for i in M.tolist()])
                     )
        P[n, n+1] = \
            ((N-n)/N) * (epsilon * (1/2) +
                         (1 - epsilon) * ((n/(N-1) > p) + (n/(N-1) == p) * (1/2))
                         )
        P[n, n] = 1 - P[n, n-1] - P[n, n+1]
    P[N, N-1], P[N, N] = epsilon * (1/2), 1 - epsilon * (1/2)
    return P


# Stochastic matrix instances
Ps = []

Ps.append(
    mp.matrix([[0.9 , 0.075, 0.025],
               [0.15, 0.8  , 0.05 ],
               [0.25, 0.25 , 0.5  ]])
)
Ps.append(KMR_Markov_matrix_sequential(N=3, p=1./3, epsilon=1e-14))
Ps.append(KMR_Markov_matrix_sequential(N=27, p=1./3, epsilon=1e-2))

# Transition rate matrix instances
As = [P.copy() for P in Ps]
for A in As:
    for i in range(A.rows):
        A[i, i] = -mp.fsum((A[i, j] for j in range(A.cols) if j != i))


def run_stoch_eig(P, verbose=0):
    """
    stoch_eig returns a stochastic vector x such that x P = x
Esempio n. 60
0
 def inv_trafo(self):
     if self._inv_trafo is None:
         M = mpmath.matrix(self.trafo.tolist())
         self._inv_trafo = ndarray.Array((M**-1).tolist())
     return self._inv_trafo