Esempio n. 1
0
def calibration_sample(Nsamples, Ncameras, Nframes, Nintrinsics,
                       optimization_inputs_baseline, observations_true,
                       pixel_uncertainty_stdev, fixedframes):

    intrinsics_sampled = np.zeros((Nsamples, Ncameras, Nintrinsics),
                                  dtype=float)
    extrinsics_sampled_mounted = np.zeros((Nsamples, Ncameras, 6), dtype=float)
    frames_sampled = np.zeros((Nsamples, Nframes, 6), dtype=float)
    calobject_warp_sampled = np.zeros((Nsamples, 2), dtype=float)
    optimization_inputs_sampled = [None] * Nsamples

    for isample in range(Nsamples):
        if (isample + 1) % 20 == 0:
            print(f"Sampling {isample+1}/{Nsamples}")

        optimization_inputs_sampled[isample] = copy.deepcopy(
            optimization_inputs_baseline)
        optimization_inputs = optimization_inputs_sampled[isample]
        optimization_inputs['observations_board'] = \
            sample_dqref(observations_true, pixel_uncertainty_stdev)[1]
        mrcal.optimize(**optimization_inputs)

        intrinsics_sampled[isample, ...] = optimization_inputs['intrinsics']
        frames_sampled[isample, ...] = optimization_inputs['frames_rt_toref']
        calobject_warp_sampled[isample,
                               ...] = optimization_inputs['calobject_warp']
        if fixedframes:
            extrinsics_sampled_mounted[
                isample, ...] = optimization_inputs['extrinsics_rt_fromref']
        else:
            # the remaining row is already 0
            extrinsics_sampled_mounted[
                isample, 1:,
                ...] = optimization_inputs['extrinsics_rt_fromref']

    return                            \
        ( intrinsics_sampled,         \
          extrinsics_sampled_mounted, \
          frames_sampled,             \
          calobject_warp_sampled,
          optimization_inputs_sampled)
Esempio n. 2
0
extrinsics_rt_fromref, points, observations = make_noisy_inputs()

# De-noise the fixed points. We know where they are exactly. And correctly
Npoints_fixed = 3
points[-Npoints_fixed:, ...] = ref_p[-Npoints_fixed:, ...]

stats = mrcal.optimize(nps.atleast_dims(intrinsics_data, -2),
                       extrinsics_rt_fromref,
                       None,
                       points,
                       None,
                       None,
                       observations,
                       indices_point_camintrinsics_camextrinsics,
                       lensmodel,
                       imagersizes=nps.atleast_dims(imagersize, -2),
                       Npoints_fixed=Npoints_fixed,
                       point_min_range=1.0,
                       point_max_range=1000.0,
                       do_optimize_intrinsics_core=False,
                       do_optimize_intrinsics_distortions=False,
                       do_optimize_extrinsics=True,
                       do_optimize_frames=True,
                       do_apply_outlier_rejection=False,
                       do_apply_regularization=True,
                       verbose=False)

# Got a solution. How well do they fit?
fit_rms = np.sqrt(np.mean(nps.norm2(points - ref_p)))

testutils.confirm_equal(fit_rms,
                        0,
Esempio n. 3
0
         points                                    = None,
         observations_board                        = observations_baseline,
         indices_frame_camintrinsics_camextrinsics = indices_frame_camintrinsics_camextrinsics,
         observations_point                        = None,
         indices_point_camintrinsics_camextrinsics = None,
         lensmodel                                 = lensmodel,
         do_optimize_calobject_warp                = True,
         calobject_warp                            = calobject_warp_ref,
         do_optimize_intrinsics_core               = True,
         do_optimize_intrinsics_distortions        = True,
         do_optimize_extrinsics                    = True,
         imagersizes                               = imagersizes,
         calibration_object_spacing                = object_spacing,
         do_apply_regularization                   = True)

mrcal.optimize(**baseline, do_apply_outlier_rejection=False)

# Done setting up. I'll be looking at tiny motions off the baseline
Nframes = len(frames_ref)
Ncameras = len(intrinsics_ref)
lensmodel = baseline['lensmodel']
Nintrinsics = mrcal.lensmodel_num_params(lensmodel)

Nmeasurements_boards = mrcal.num_measurements_boards(**baseline)
Nmeasurements_regularization = mrcal.num_measurements_regularization(
    **baseline)

p0, x0, J0 = mrcal.optimizer_callback(no_factorization=True, **baseline)[:3]
J0 = J0.toarray()

###########################################################################
Esempio n. 4
0
          indices_point_camintrinsics_camextrinsics = None,
          lensmodel                                 = lensmodel,
          calobject_warp                            = None,
          imagersizes                               = imagersizes,
          calibration_object_spacing                = object_spacing,
          verbose                                   = False,
          observed_pixel_uncertainty                = pixel_uncertainty_stdev,
          do_apply_regularization                   = True)

# Solve this thing incrementally
optimization_inputs['do_optimize_intrinsics_core'] = False
optimization_inputs['do_optimize_intrinsics_distortions'] = False
optimization_inputs['do_optimize_extrinsics'] = True
optimization_inputs['do_optimize_frames'] = True
optimization_inputs['do_optimize_calobject_warp'] = False
mrcal.optimize(**optimization_inputs, do_apply_outlier_rejection=True)

optimization_inputs['do_optimize_intrinsics_core'] = True
optimization_inputs['do_optimize_intrinsics_distortions'] = False
optimization_inputs['do_optimize_extrinsics'] = True
optimization_inputs['do_optimize_frames'] = True
optimization_inputs['do_optimize_calobject_warp'] = False
mrcal.optimize(**optimization_inputs, do_apply_outlier_rejection=True)

testutils.confirm_equal(mrcal.num_states_intrinsics(**optimization_inputs),
                        4 * Ncameras, "num_states_intrinsics()")
testutils.confirm_equal(mrcal.num_states_extrinsics(**optimization_inputs),
                        6 * (Ncameras - 1), "num_states_extrinsics()")
testutils.confirm_equal(mrcal.num_states_frames(**optimization_inputs),
                        6 * Nframes, "num_states_frames()")
testutils.confirm_equal(mrcal.num_states_points(**optimization_inputs), 0,
Esempio n. 5
0
          observations_point                        = None,
          indices_point_camintrinsics_camextrinsics = None,
          lensmodel                                 = lensmodel,
          calobject_warp                            = copy.deepcopy(calobject_warp_true),
          imagersizes                               = imagersizes,
          calibration_object_spacing                = object_spacing,
          verbose                                   = False,
          observed_pixel_uncertainty                = pixel_uncertainty_stdev,
          do_optimize_frames                        = not fixedframes,
          do_optimize_intrinsics_core               = False if args.model=='splined' else True,
          do_optimize_intrinsics_distortions        = True,
          do_optimize_extrinsics                    = True,
          do_optimize_calobject_warp                = True,
          do_apply_regularization                   = True,
          do_apply_outlier_rejection                = False)
mrcal.optimize(**optimization_inputs_baseline)

models_baseline = \
    [ mrcal.cameramodel( optimization_inputs = optimization_inputs_baseline,
                         icam_intrinsics     = i) \
      for i in range(args.Ncameras) ]

# I evaluate the projection uncertainty of this vector. In each camera. I'd like
# it to be center-ish, but not AT the center. So I look at 1/3 (w,h). I want
# this to represent a point in a globally-consistent coordinate system. Here I
# have fixed frames, so using the reference coordinate system gives me that
# consistency. Note that I look at q0 for each camera separately, so I'm going
# to evaluate a different world point for each camera
q0_baseline = imagersizes[0] / 3.

if args.make_documentation_plots is not None:
Esempio n. 6
0
def calibration_baseline(model,
                         Ncameras,
                         Nframes,
                         extra_observation_at,
                         object_width_n,
                         object_height_n,
                         object_spacing,
                         extrinsics_rt_fromref_true,
                         calobject_warp_true,
                         fixedframes,
                         testdir,
                         cull_left_of_center=False,
                         allow_nonidentity_cam0_transform=False,
                         range_to_boards=4.0):
    r'''Compute a calibration baseline as a starting point for experiments

This is a perfect, noiseless solve. Regularization IS enabled, and the returned
model is at the optimization optimum. So the returned models will not sit
exactly at the ground-truth.

NOTE: if not fixedframes: the ref frame in the returned
optimization_inputs_baseline is NOT the ref frame used by the returned
extrinsics and frames arrays. The arrays in optimization_inputs_baseline had to
be transformed to reference off camera 0. If the extrinsics of camera 0 are the
identity, then the two ref coord systems are the same. To avoid accidental bugs,
we have a kwarg allow_nonidentity_cam0_transform, which defaults to False. if
not allow_nonidentity_cam0_transform and norm(extrinsics_rt_fromref_true[0]) >
0: raise

This logic is here purely for safety. A caller that handles non-identity cam0
transforms has to explicitly say that

ARGUMENTS

- model: string. 'opencv4' or 'opencv8' or 'splined'

- ...

    '''

    if re.match('opencv', model):
        models_true = (
            mrcal.cameramodel(f"{testdir}/data/cam0.opencv8.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam0.opencv8.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam1.opencv8.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam1.opencv8.cameramodel"))

        if model == 'opencv4':
            # I have opencv8 models_true, but I truncate to opencv4 models_true
            for m in models_true:
                m.intrinsics(intrinsics=('LENSMODEL_OPENCV4',
                                         m.intrinsics()[1][:8]))
    elif model == 'splined':
        models_true = (
            mrcal.cameramodel(f"{testdir}/data/cam0.splined.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam0.splined.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam1.splined.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam1.splined.cameramodel"))
    else:
        raise Exception("Unknown lens being tested")

    models_true = models_true[:Ncameras]
    lensmodel = models_true[0].intrinsics()[0]
    Nintrinsics = mrcal.lensmodel_num_params(lensmodel)

    for i in range(Ncameras):
        models_true[i].extrinsics_rt_fromref(extrinsics_rt_fromref_true[i])

    if not allow_nonidentity_cam0_transform and \
       nps.norm2(extrinsics_rt_fromref_true[0]) > 0:
        raise Exception(
            "A non-identity cam0 transform was given, but the caller didn't explicitly say that they support this"
        )

    imagersizes = nps.cat(*[m.imagersize() for m in models_true])

    # These are perfect
    intrinsics_true = nps.cat(*[m.intrinsics()[1] for m in models_true])
    extrinsics_true_mounted = nps.cat(
        *[m.extrinsics_rt_fromref() for m in models_true])
    x_center = -(Ncameras - 1) / 2.

    # shapes (Nframes, Ncameras, Nh, Nw, 2),
    #        (Nframes, 4,3)
    q_true,Rt_ref_board_true = \
        mrcal.synthesize_board_observations(models_true,
                                            object_width_n, object_height_n, object_spacing,
                                            calobject_warp_true,
                                            np.array((0.,             0.,             0.,             x_center, 0,   range_to_boards)),
                                            np.array((np.pi/180.*30., np.pi/180.*30., np.pi/180.*20., 2.5,      2.5, range_to_boards/2.0)),
                                            Nframes)

    if extra_observation_at is not None:
        q_true_extra,Rt_ref_board_true_extra = \
            mrcal.synthesize_board_observations(models_true,
                                                object_width_n, object_height_n, object_spacing,
                                                calobject_warp_true,
                                                np.array((0.,             0.,             0.,             x_center, 0,   extra_observation_at)),
                                                np.array((np.pi/180.*30., np.pi/180.*30., np.pi/180.*20., 2.5,      2.5, extra_observation_at/10.0)),
                                                Nframes = 1)

        q_true = nps.glue(q_true, q_true_extra, axis=-5)
        Rt_ref_board_true = nps.glue(Rt_ref_board_true,
                                     Rt_ref_board_true_extra,
                                     axis=-3)

        Nframes += 1

    frames_true = mrcal.rt_from_Rt(Rt_ref_board_true)

    ############# I have perfect observations in q_true.
    # weight has shape (Nframes, Ncameras, Nh, Nw),
    weight01 = (np.random.rand(*q_true.shape[:-1]) + 1.) / 2.  # in [0,1]
    weight0 = 0.2
    weight1 = 1.0
    weight = weight0 + (weight1 - weight0) * weight01

    if cull_left_of_center:

        imagersize = models_true[0].imagersize()
        for m in models_true[1:]:
            if np.any(m.imagersize() - imagersize):
                raise Exception(
                    "I'm assuming all cameras have the same imager size, but this is false"
                )

        weight[q_true[..., 0] < imagersize[0] / 2.] /= 1000.

    # I want observations of shape (Nframes*Ncameras, Nh, Nw, 3) where each row is
    # (x,y,weight)
    observations_true = nps.clump(nps.glue(q_true,
                                           nps.dummy(weight, -1),
                                           axis=-1),
                                  n=2)

    # Dense observations. All the cameras see all the boards
    indices_frame_camera = np.zeros((Nframes * Ncameras, 2), dtype=np.int32)
    indices_frame = indices_frame_camera[:, 0].reshape(Nframes, Ncameras)
    indices_frame.setfield(nps.outer(np.arange(Nframes, dtype=np.int32),
                                     np.ones((Ncameras, ), dtype=np.int32)),
                           dtype=np.int32)
    indices_camera = indices_frame_camera[:, 1].reshape(Nframes, Ncameras)
    indices_camera.setfield(nps.outer(np.ones((Nframes, ), dtype=np.int32),
                                      np.arange(Ncameras, dtype=np.int32)),
                            dtype=np.int32)

    indices_frame_camintrinsics_camextrinsics = \
        nps.glue(indices_frame_camera,
                 indices_frame_camera[:,(1,)],
                 axis=-1)
    if not fixedframes:
        indices_frame_camintrinsics_camextrinsics[:, 2] -= 1

    ###########################################################################
    # p = mrcal.show_geometry(models_true,
    #                         frames          = frames_true,
    #                         object_width_n  = object_width_n,
    #                         object_height_n = object_height_n,
    #                         object_spacing  = object_spacing)
    # sys.exit()

    # I now reoptimize the perfect-observations problem. Without regularization,
    # this is a no-op: I'm already at the optimum. With regularization, this will
    # move us a certain amount (that the test will evaluate). Then I look at
    # noise-induced motions off this optimization optimum
    optimization_inputs_baseline = \
        dict( intrinsics                                = copy.deepcopy(intrinsics_true),
              points                                    = None,
              observations_board                        = observations_true,
              indices_frame_camintrinsics_camextrinsics = indices_frame_camintrinsics_camextrinsics,
              observations_point                        = None,
              indices_point_camintrinsics_camextrinsics = None,
              lensmodel                                 = lensmodel,
              calobject_warp                            = copy.deepcopy(calobject_warp_true),
              imagersizes                               = imagersizes,
              calibration_object_spacing                = object_spacing,
              verbose                                   = False,
              do_optimize_frames                        = not fixedframes,
              do_optimize_intrinsics_core               = False if model =='splined' else True,
              do_optimize_intrinsics_distortions        = True,
              do_optimize_extrinsics                    = True,
              do_optimize_calobject_warp                = True,
              do_apply_regularization                   = True,
              do_apply_outlier_rejection                = False)

    if fixedframes:
        # Frames are fixed: each camera has an independent pose
        optimization_inputs_baseline['extrinsics_rt_fromref'] = \
            copy.deepcopy(extrinsics_true_mounted)
        optimization_inputs_baseline['frames_rt_toref'] = copy.deepcopy(
            frames_true)
    else:
        # Frames are NOT fixed: cam0 is fixed as the reference coord system. I
        # transform each optimization extrinsics vector to be relative to cam0
        optimization_inputs_baseline['extrinsics_rt_fromref'] = \
            mrcal.compose_rt(extrinsics_true_mounted[1:,:],
                             mrcal.invert_rt(extrinsics_true_mounted[0,:]))
        optimization_inputs_baseline['frames_rt_toref'] = \
            mrcal.compose_rt(extrinsics_true_mounted[0,:], frames_true)

    mrcal.optimize(**optimization_inputs_baseline)

    models_baseline = \
        [ mrcal.cameramodel( optimization_inputs = optimization_inputs_baseline,
                             icam_intrinsics     = i) \
          for i in range(Ncameras) ]

    return                                                     \
        optimization_inputs_baseline,                          \
        models_true, models_baseline,                          \
        indices_frame_camintrinsics_camextrinsics,             \
        lensmodel, Nintrinsics, imagersizes,                   \
        intrinsics_true, extrinsics_true_mounted, frames_true, \
        observations_true,                                     \
        Nframes
Esempio n. 7
0
def calibration_baseline(model,
                         Ncameras,
                         Nframes,
                         extra_observation_at,
                         pixel_uncertainty_stdev,
                         object_width_n,
                         object_height_n,
                         object_spacing,
                         extrinsics_rt_fromref_true,
                         calobject_warp_true,
                         fixedframes,
                         testdir,
                         cull_left_of_center=False):
    r'''Compute a calibration baseline as a starting point for experiments

This is a perfect, noiseless solve. Regularization IS enabled, and the returned
model is at the optimization optimum. So the returned models will not sit
exactly at the ground-truth

ARGUMENTS

- model: string. 'opencv4' or 'opencv8' or 'splined'

- ...

    '''

    if re.match('opencv', model):
        models_true = (
            mrcal.cameramodel(f"{testdir}/data/cam0.opencv8.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam0.opencv8.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam1.opencv8.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam1.opencv8.cameramodel"))

        if model == 'opencv4':
            # I have opencv8 models_true, but I truncate to opencv4 models_true
            for m in models_true:
                m.intrinsics(intrinsics=('LENSMODEL_OPENCV4',
                                         m.intrinsics()[1][:8]))
    elif model == 'splined':
        models_true = (
            mrcal.cameramodel(f"{testdir}/data/cam0.splined.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam0.splined.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam1.splined.cameramodel"),
            mrcal.cameramodel(f"{testdir}/data/cam1.splined.cameramodel"))
    else:
        raise Exception("Unknown lens being tested")

    models_true = models_true[:Ncameras]
    lensmodel = models_true[0].intrinsics()[0]
    Nintrinsics = mrcal.lensmodel_num_params(lensmodel)

    for i in range(Ncameras):
        models_true[i].extrinsics_rt_fromref(extrinsics_rt_fromref_true[i])

    imagersizes = nps.cat(*[m.imagersize() for m in models_true])

    # These are perfect
    intrinsics_true = nps.cat(*[m.intrinsics()[1] for m in models_true])
    extrinsics_true_mounted = nps.cat(
        *[m.extrinsics_rt_fromref() for m in models_true])
    x_center = -(Ncameras - 1) / 2.

    # shapes (Nframes, Ncameras, Nh, Nw, 2),
    #        (Nframes, 4,3)
    q_true,Rt_cam0_board_true = \
        mrcal.synthesize_board_observations(models_true,
                                            object_width_n, object_height_n, object_spacing,
                                            calobject_warp_true,
                                            np.array((0.,             0.,             0.,             x_center, 0,   4.0)),
                                            np.array((np.pi/180.*30., np.pi/180.*30., np.pi/180.*20., 2.5,      2.5, 2.0)),
                                            Nframes)

    if extra_observation_at:
        c = mrcal.ref_calibration_object(object_width_n, object_height_n,
                                         object_spacing, calobject_warp_true)
        Rt_cam0_board_true_far = \
            nps.glue( np.eye(3),
                      np.array((0,0,extra_observation_at)),
                      axis=-2)
        q_true_far = \
            mrcal.project(mrcal.transform_point_Rt(Rt_cam0_board_true_far, c),
                          *models_true[0].intrinsics())

        q_true = nps.glue(q_true_far, q_true, axis=-5)
        Rt_cam0_board_true = nps.glue(Rt_cam0_board_true_far,
                                      Rt_cam0_board_true,
                                      axis=-3)

        Nframes += 1

    frames_true = mrcal.rt_from_Rt(Rt_cam0_board_true)

    ############# I have perfect observations in q_true. I corrupt them by noise
    # weight has shape (Nframes, Ncameras, Nh, Nw),
    weight01 = (np.random.rand(*q_true.shape[:-1]) + 1.) / 2.  # in [0,1]
    weight0 = 0.2
    weight1 = 1.0
    weight = weight0 + (weight1 - weight0) * weight01

    if cull_left_of_center:

        imagersize = models_true[0].imagersize()
        for m in models_true[1:]:
            if np.any(m.imagersize() - imagersize):
                raise Exception(
                    "I'm assuming all cameras have the same imager size, but this is false"
                )

        weight[q_true[..., 0] < imagersize[0] / 2.] /= 1000.

    # I want observations of shape (Nframes*Ncameras, Nh, Nw, 3) where each row is
    # (x,y,weight)
    observations_true = nps.clump(nps.glue(q_true,
                                           nps.dummy(weight, -1),
                                           axis=-1),
                                  n=2)

    # Dense observations. All the cameras see all the boards
    indices_frame_camera = np.zeros((Nframes * Ncameras, 2), dtype=np.int32)
    indices_frame = indices_frame_camera[:, 0].reshape(Nframes, Ncameras)
    indices_frame.setfield(nps.outer(np.arange(Nframes, dtype=np.int32),
                                     np.ones((Ncameras, ), dtype=np.int32)),
                           dtype=np.int32)
    indices_camera = indices_frame_camera[:, 1].reshape(Nframes, Ncameras)
    indices_camera.setfield(nps.outer(np.ones((Nframes, ), dtype=np.int32),
                                      np.arange(Ncameras, dtype=np.int32)),
                            dtype=np.int32)

    indices_frame_camintrinsics_camextrinsics = \
        nps.glue(indices_frame_camera,
                 indices_frame_camera[:,(1,)],
                 axis=-1)
    if not fixedframes:
        indices_frame_camintrinsics_camextrinsics[:, 2] -= 1

    ###########################################################################
    # Now I apply pixel noise, and look at the effects on the resulting calibration.

    # p = mrcal.show_geometry(models_true,
    #                         frames          = frames_true,
    #                         object_width_n  = object_width_n,
    #                         object_height_n = object_height_n,
    #                         object_spacing  = object_spacing)
    # sys.exit()

    # I now reoptimize the perfect-observations problem. Without regularization,
    # this is a no-op: I'm already at the optimum. With regularization, this will
    # move us a certain amount (that the test will evaluate). Then I look at
    # noise-induced motions off this optimization optimum
    optimization_inputs_baseline = \
        dict( intrinsics                                = copy.deepcopy(intrinsics_true),
              extrinsics_rt_fromref                     = copy.deepcopy(extrinsics_true_mounted if fixedframes else extrinsics_true_mounted[1:,:]),
              frames_rt_toref                           = copy.deepcopy(frames_true),
              points                                    = None,
              observations_board                        = observations_true,
              indices_frame_camintrinsics_camextrinsics = indices_frame_camintrinsics_camextrinsics,
              observations_point                        = None,
              indices_point_camintrinsics_camextrinsics = None,
              lensmodel                                 = lensmodel,
              calobject_warp                            = copy.deepcopy(calobject_warp_true),
              imagersizes                               = imagersizes,
              calibration_object_spacing                = object_spacing,
              verbose                                   = False,
              observed_pixel_uncertainty                = pixel_uncertainty_stdev,
              do_optimize_frames                        = not fixedframes,
              do_optimize_intrinsics_core               = False if model =='splined' else True,
              do_optimize_intrinsics_distortions        = True,
              do_optimize_extrinsics                    = True,
              do_optimize_calobject_warp                = True,
              do_apply_regularization                   = True,
              do_apply_outlier_rejection                = False)
    mrcal.optimize(**optimization_inputs_baseline)

    models_baseline = \
        [ mrcal.cameramodel( optimization_inputs = optimization_inputs_baseline,
                             icam_intrinsics     = i) \
          for i in range(Ncameras) ]

    return                                                     \
        optimization_inputs_baseline,                          \
        models_true, models_baseline,                          \
        indices_frame_camintrinsics_camextrinsics,             \
        lensmodel, Nintrinsics, imagersizes,                   \
        intrinsics_true, extrinsics_true_mounted, frames_true, \
        observations_true,                                     \
        Nframes