def test_correct_number_of_clusters(): # in 'auto' mode n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) # Parameters chosen specifically for this task. # Compute OPTICS clust = OPTICS(max_eps=5.0 * 6.0, min_samples=4, xi=.1) clust.fit(X) # number of clusters, ignoring noise if present n_clusters_1 = len(set(clust.labels_)) - int(-1 in clust.labels_) assert n_clusters_1 == n_clusters # check attribute types and sizes assert clust.labels_.shape == (len(X),) assert clust.labels_.dtype.kind == 'i' assert clust.reachability_.shape == (len(X),) assert clust.reachability_.dtype.kind == 'f' assert clust.core_distances_.shape == (len(X),) assert clust.core_distances_.dtype.kind == 'f' assert clust.ordering_.shape == (len(X),) assert clust.ordering_.dtype.kind == 'i' assert set(clust.ordering_) == set(range(len(X)))
def test_bad_reachability(): msg = "All reachability values are inf. Set a larger max_eps." centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) with pytest.warns(UserWarning, match=msg): clust = OPTICS(max_eps=5.0 * 0.003, min_samples=10, eps=0.015) clust.fit(X)
def test_precomputed_dists(): redX = X[::2] dists = pairwise_distances(redX, metric='euclidean') clust1 = OPTICS(min_samples=10, algorithm='brute', metric='precomputed').fit(dists) clust2 = OPTICS(min_samples=10, algorithm='brute', metric='euclidean').fit(redX) assert_allclose(clust1.reachability_, clust2.reachability_) assert_array_equal(clust1.labels_, clust2.labels_)
def test_min_cluster_size(min_cluster_size): redX = X[::2] # reduce for speed clust = OPTICS(min_samples=9, min_cluster_size=min_cluster_size).fit(redX) cluster_sizes = np.bincount(clust.labels_[clust.labels_ != -1]) if cluster_sizes.size: assert min(cluster_sizes) >= min_cluster_size # check behaviour is the same when min_cluster_size is a fraction clust_frac = OPTICS(min_samples=9, min_cluster_size=min_cluster_size / redX.shape[0]) clust_frac.fit(redX) assert_array_equal(clust.labels_, clust_frac.labels_)
def test_extract_xi(): # small and easy test (no clusters around other clusters) # but with a clear noise data. rng = np.random.RandomState(0) n_points_per_cluster = 5 C1 = [-5, -2] + .8 * rng.randn(n_points_per_cluster, 2) C2 = [4, -1] + .1 * rng.randn(n_points_per_cluster, 2) C3 = [1, -2] + .2 * rng.randn(n_points_per_cluster, 2) C4 = [-2, 3] + .3 * rng.randn(n_points_per_cluster, 2) C5 = [3, -2] + .6 * rng.randn(n_points_per_cluster, 2) C6 = [5, 6] + .2 * rng.randn(n_points_per_cluster, 2) X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]]), C6)) expected_labels = np.r_[[2] * 5, [0] * 5, [1] * 5, [3] * 5, [1] * 5, -1, [4] * 5] X, expected_labels = shuffle(X, expected_labels, random_state=rng) clust = OPTICS(min_samples=3, min_cluster_size=2, max_eps=20, cluster_method='xi', xi=0.4).fit(X) assert_array_equal(clust.labels_, expected_labels) # check float min_samples and min_cluster_size clust = OPTICS(min_samples=0.1, min_cluster_size=0.08, max_eps=20, cluster_method='xi', xi=0.4).fit(X) assert_array_equal(clust.labels_, expected_labels) X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]] * 2), C6)) expected_labels = np.r_[[1] * 5, [3] * 5, [2] * 5, [0] * 5, [2] * 5, -1, -1, [4] * 5] X, expected_labels = shuffle(X, expected_labels, random_state=rng) clust = OPTICS(min_samples=3, min_cluster_size=3, max_eps=20, cluster_method='xi', xi=0.3).fit(X) # this may fail if the predecessor correction is not at work! assert_array_equal(clust.labels_, expected_labels) C1 = [[0, 0], [0, 0.1], [0, -.1], [0.1, 0]] C2 = [[10, 10], [10, 9], [10, 11], [9, 10]] C3 = [[100, 100], [100, 90], [100, 110], [90, 100]] X = np.vstack((C1, C2, C3)) expected_labels = np.r_[[0] * 4, [1] * 4, [2] * 4] X, expected_labels = shuffle(X, expected_labels, random_state=rng) clust = OPTICS(min_samples=2, min_cluster_size=2, max_eps=np.inf, cluster_method='xi', xi=0.04).fit(X) assert_array_equal(clust.labels_, expected_labels)
def test_processing_order(): # Ensure that we consider all unprocessed points, # not only direct neighbors. when picking the next point. Y = [[0], [10], [-10], [25]] clust = OPTICS(min_samples=3, max_eps=15).fit(Y) assert_array_equal(clust.reachability_, [np.inf, 10, 10, 15]) assert_array_equal(clust.core_distances_, [10, 15, np.inf, np.inf]) assert_array_equal(clust.ordering_, [0, 1, 2, 3])
def test_minimum_number_of_sample_check(): # test that we check a minimum number of samples msg = "min_samples must be no greater than" # Compute OPTICS X = [[1, 1]] clust = OPTICS(max_eps=5.0 * 0.3, min_samples=10, min_cluster_size=1) # Run the fit assert_raise_message(ValueError, msg, clust.fit, X)
def test_cluster_hierarchy_(): rng = np.random.RandomState(0) n_points_per_cluster = 100 C1 = [0, 0] + 2 * rng.randn(n_points_per_cluster, 2) C2 = [0, 0] + 50 * rng.randn(n_points_per_cluster, 2) X = np.vstack((C1, C2)) X = shuffle(X, random_state=0) clusters = OPTICS(min_samples=20, xi=.1).fit(X).cluster_hierarchy_ assert clusters.shape == (2, 2) diff = np.sum(clusters - np.array([[0, 99], [0, 199]])) assert diff / len(X) < 0.05
def test_bad_extract(): # Test an extraction of eps too close to original eps msg = "Specify an epsilon smaller than 0.15. Got 0.3." centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) # Compute OPTICS clust = OPTICS(max_eps=5.0 * 0.03, cluster_method='dbscan', eps=0.3, min_samples=10) assert_raise_message(ValueError, msg, clust.fit, X)
def test_close_extract(): # Test extract where extraction eps is close to scaled max_eps centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) # Compute OPTICS clust = OPTICS(max_eps=1.0, cluster_method='dbscan', eps=0.3, min_samples=10).fit(X) # Cluster ordering starts at 0; max cluster label = 2 is 3 clusters assert max(clust.labels_) == 2
def test_extract_dbscan(): # testing an easy dbscan case. Not including clusters with different # densities. rng = np.random.RandomState(0) n_points_per_cluster = 20 C1 = [-5, -2] + .2 * rng.randn(n_points_per_cluster, 2) C2 = [4, -1] + .2 * rng.randn(n_points_per_cluster, 2) C3 = [1, 2] + .2 * rng.randn(n_points_per_cluster, 2) C4 = [-2, 3] + .2 * rng.randn(n_points_per_cluster, 2) X = np.vstack((C1, C2, C3, C4)) clust = OPTICS(cluster_method='dbscan', eps=.5).fit(X) assert_array_equal(np.sort(np.unique(clust.labels_)), [0, 1, 2, 3])
def test_min_samples_edge_case(): C1 = [[0, 0], [0, 0.1], [0, -.1]] C2 = [[10, 10], [10, 9], [10, 11]] C3 = [[100, 100], [100, 96], [100, 106]] X = np.vstack((C1, C2, C3)) expected_labels = np.r_[[0] * 3, [1] * 3, [2] * 3] clust = OPTICS(min_samples=3, max_eps=7, cluster_method='xi', xi=0.04).fit(X) assert_array_equal(clust.labels_, expected_labels) expected_labels = np.r_[[0] * 3, [1] * 3, [-1] * 3] clust = OPTICS(min_samples=3, max_eps=3, cluster_method='xi', xi=0.04).fit(X) assert_array_equal(clust.labels_, expected_labels) expected_labels = np.r_[[-1] * 9] with pytest.warns(UserWarning, match="All reachability values"): clust = OPTICS(min_samples=4, max_eps=3, cluster_method='xi', xi=0.04).fit(X) assert_array_equal(clust.labels_, expected_labels)
def test_dbscan_optics_parity(eps, min_samples): # Test that OPTICS clustering labels are <= 5% difference of DBSCAN centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) # calculate optics with dbscan extract at 0.3 epsilon op = OPTICS(min_samples=min_samples, cluster_method='dbscan', eps=eps).fit(X) # calculate dbscan labels db = DBSCAN(eps=eps, min_samples=min_samples).fit(X) contingency = contingency_matrix(db.labels_, op.labels_) agree = min(np.sum(np.max(contingency, axis=0)), np.sum(np.max(contingency, axis=1))) disagree = X.shape[0] - agree percent_mismatch = np.round((disagree - 1) / X.shape[0], 2) # verify label mismatch is <= 5% labels assert percent_mismatch <= 0.05
def test_wrong_cluster_method(): clust = OPTICS(cluster_method='superfancy') with pytest.raises(ValueError, match="cluster_method should be one of "): clust.fit(X)
def test_compare_to_ELKI(): # Expected values, computed with (future) ELKI 0.7.5 using: # java -jar elki.jar cli -dbc.in csv -dbc.filter FixedDBIDsFilter # -algorithm clustering.optics.OPTICSHeap -optics.minpts 5 # where the FixedDBIDsFilter gives 0-indexed ids. r1 = [np.inf, 1.0574896366427478, 0.7587934993548423, 0.7290174038973836, 0.7290174038973836, 0.7290174038973836, 0.6861627576116127, 0.7587934993548423, 0.9280118450166668, 1.1748022534146194, 3.3355455741292257, 0.49618389254482587, 0.2552805046961355, 0.2552805046961355, 0.24944622248445714, 0.24944622248445714, 0.24944622248445714, 0.2552805046961355, 0.2552805046961355, 0.3086779122185853, 4.163024452756142, 1.623152630340929, 0.45315840475822655, 0.25468325192031926, 0.2254004358159971, 0.18765711877083036, 0.1821471333893275, 0.1821471333893275, 0.18765711877083036, 0.18765711877083036, 0.2240202988740153, 1.154337614548715, 1.342604473837069, 1.323308536402633, 0.8607514948648837, 0.27219111215810565, 0.13260875220533205, 0.13260875220533205, 0.09890587675958984, 0.09890587675958984, 0.13548790801634494, 0.1575483940837384, 0.17515137170530226, 0.17575920159442388, 0.27219111215810565, 0.6101447895405373, 1.3189208094864302, 1.323308536402633, 2.2509184159764577, 2.4517810628594527, 3.675977064404973, 3.8264795626020365, 2.9130735341510614, 2.9130735341510614, 2.9130735341510614, 2.9130735341510614, 2.8459300127258036, 2.8459300127258036, 2.8459300127258036, 3.0321982337972537] o1 = [0, 3, 6, 4, 7, 8, 2, 9, 5, 1, 31, 30, 32, 34, 33, 38, 39, 35, 37, 36, 44, 21, 23, 24, 22, 25, 27, 29, 26, 28, 20, 40, 45, 46, 10, 15, 11, 13, 17, 19, 18, 12, 16, 14, 47, 49, 43, 48, 42, 41, 53, 57, 51, 52, 56, 59, 54, 55, 58, 50] p1 = [-1, 0, 3, 6, 6, 6, 8, 3, 7, 5, 1, 31, 30, 30, 34, 34, 34, 32, 32, 37, 36, 44, 21, 23, 24, 22, 25, 25, 22, 22, 22, 21, 40, 45, 46, 10, 15, 15, 13, 13, 15, 11, 19, 15, 10, 47, 12, 45, 14, 43, 42, 53, 57, 57, 57, 57, 59, 59, 59, 58] # Tests against known extraction array # Does NOT work with metric='euclidean', because mrex euclidean has # worse numeric precision. 'minkowski' is slower but more accurate. clust1 = OPTICS(min_samples=5).fit(X) assert_array_equal(clust1.ordering_, np.array(o1)) assert_array_equal(clust1.predecessor_[clust1.ordering_], np.array(p1)) assert_allclose(clust1.reachability_[clust1.ordering_], np.array(r1)) # ELKI currently does not print the core distances (which are not used much # in literature, but we can at least ensure to have this consistency: for i in clust1.ordering_[1:]: assert (clust1.reachability_[i] >= clust1.core_distances_[clust1.predecessor_[i]]) # Expected values, computed with (future) ELKI 0.7.5 using r2 = [np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, 0.27219111215810565, 0.13260875220533205, 0.13260875220533205, 0.09890587675958984, 0.09890587675958984, 0.13548790801634494, 0.1575483940837384, 0.17515137170530226, 0.17575920159442388, 0.27219111215810565, 0.4928068613197889, np.inf, 0.2666183922512113, 0.18765711877083036, 0.1821471333893275, 0.1821471333893275, 0.1821471333893275, 0.18715928772277457, 0.18765711877083036, 0.18765711877083036, 0.25468325192031926, np.inf, 0.2552805046961355, 0.2552805046961355, 0.24944622248445714, 0.24944622248445714, 0.24944622248445714, 0.2552805046961355, 0.2552805046961355, 0.3086779122185853, 0.34466409325984865, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf] o2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 11, 13, 17, 19, 18, 12, 16, 14, 47, 46, 20, 22, 25, 23, 27, 29, 24, 26, 28, 21, 30, 32, 34, 33, 38, 39, 35, 37, 36, 31, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59] p2 = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 15, 15, 13, 13, 15, 11, 19, 15, 10, 47, -1, 20, 22, 25, 25, 25, 25, 22, 22, 23, -1, 30, 30, 34, 34, 34, 32, 32, 37, 38, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] clust2 = OPTICS(min_samples=5, max_eps=0.5).fit(X) assert_array_equal(clust2.ordering_, np.array(o2)) assert_array_equal(clust2.predecessor_[clust2.ordering_], np.array(p2)) assert_allclose(clust2.reachability_[clust2.ordering_], np.array(r2)) index = np.where(clust1.core_distances_ <= 0.5)[0] assert_allclose(clust1.core_distances_[index], clust2.core_distances_[index])
def test_min_cluster_size_invalid2(): clust = OPTICS(min_cluster_size=len(X) + 1) with pytest.raises(ValueError, match="must be no greater than the "): clust.fit(X)
def test_min_cluster_size_invalid(min_cluster_size): clust = OPTICS(min_cluster_size=min_cluster_size) with pytest.raises(ValueError, match="must be a positive integer or a "): clust.fit(X)