Esempio n. 1
0
def test_multi_target_sample_weight_partial_fit():
    # weighted regressor
    X = [[1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [2.718, 3.141]]
    w = [2., 1.]
    rgr_w = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))
    rgr_w.partial_fit(X, y, w)

    # weighted with different weights
    w = [2., 2.]
    rgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))
    rgr.partial_fit(X, y, w)

    assert rgr.predict(X)[0][0] != rgr_w.predict(X)[0][0]
Esempio n. 2
0
def test_multi_target_sample_weights():
    # weighted regressor
    Xw = [[1, 2, 3], [4, 5, 6]]
    yw = [[3.141, 2.718], [2.718, 3.141]]
    w = [2., 1.]
    rgr_w = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr_w.fit(Xw, yw, w)

    # unweighted, but with repeated samples
    X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [3.141, 2.718], [2.718, 3.141]]
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X, y)

    X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]]
    assert_almost_equal(rgr.predict(X_test), rgr_w.predict(X_test))
Esempio n. 3
0
def test_multi_target_sparse_regression():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test = X[50:]

    for sparse in [
            sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix,
            sp.lil_matrix
    ]:
        rgr = MultiOutputRegressor(Lasso(random_state=0))
        rgr_sparse = MultiOutputRegressor(Lasso(random_state=0))

        rgr.fit(X_train, y_train)
        rgr_sparse.fit(sparse(X_train), y_train)

        assert_almost_equal(rgr.predict(X_test),
                            rgr_sparse.predict(sparse(X_test)))
Esempio n. 4
0
def test_multi_target_regression_partial_fit():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    half_index = 25
    for n in range(3):
        sgr = SGDRegressor(random_state=0, max_iter=5)
        sgr.partial_fit(X_train[:half_index], y_train[:half_index, n])
        sgr.partial_fit(X_train[half_index:], y_train[half_index:, n])
        references[:, n] = sgr.predict(X_test)

    sgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))

    sgr.partial_fit(X_train[:half_index], y_train[:half_index])
    sgr.partial_fit(X_train[half_index:], y_train[half_index:])

    y_pred = sgr.predict(X_test)
    assert_almost_equal(references, y_pred)
    assert not hasattr(MultiOutputRegressor(Lasso), 'partial_fit')
Esempio n. 5
0
def test_multi_target_regression():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    for n in range(3):
        rgr = GradientBoostingRegressor(random_state=0)
        rgr.fit(X_train, y_train[:, n])
        references[:, n] = rgr.predict(X_test)

    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X_train, y_train)
    y_pred = rgr.predict(X_test)

    assert_almost_equal(references, y_pred)
Esempio n. 6
0
def test_multi_target_sample_weights_api():
    X = [[1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [2.718, 3.141]]
    w = [0.8, 0.6]

    rgr = MultiOutputRegressor(Lasso())
    assert_raises_regex(ValueError, "does not support sample weights", rgr.fit,
                        X, y, w)

    # no exception should be raised if the base estimator supports weights
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X, y, w)
Esempio n. 7
0
def test_multi_target_regression_one_target():
    # Test multi target regression raises
    X, y = datasets.make_regression(n_targets=1)
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    assert_raises(ValueError, rgr.fit, X, y)
Esempio n. 8
0
# Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(200 * rng.rand(600, 1) - 100, axis=0)
y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T
y += (0.5 - rng.rand(*y.shape))

X_train, X_test, y_train, y_test = train_test_split(X,
                                                    y,
                                                    train_size=400,
                                                    test_size=200,
                                                    random_state=4)

max_depth = 30
regr_multirf = MultiOutputRegressor(
    RandomForestRegressor(n_estimators=100,
                          max_depth=max_depth,
                          random_state=0))
regr_multirf.fit(X_train, y_train)

regr_rf = RandomForestRegressor(n_estimators=100,
                                max_depth=max_depth,
                                random_state=2)
regr_rf.fit(X_train, y_train)

# Predict on new data
y_multirf = regr_multirf.predict(X_test)
y_rf = regr_rf.predict(X_test)

# Plot the results
plt.figure()
s = 50